Hydrological modeling in a rural catchment in Germany

Cristiano Andre Pott, Nicola Fohrer

Abstract


The use of ecohydrological modeling in studies of water balance, sediment and nutrient load is increasing worldwide. Important in modeling is a good calibration and validation of the model in order to use it as a tool to study land use change. The aim of this study is to calibrate and validate the model Soil and Water Assessment Tool (SWAT) and to estimate the main components of river discharge in a rural lowland catchment. 462 km² of the upper part of the Stör catchment, located in Northern Germany was investigated. The results of modeling showed a good performance for calibration and validation of daily discharge at three gauging stations of the upper Stör catchment. SWAT calibration shows that discharge components are represented by 34.3% of drainage, 52.8% of groundwater flow, 7.7% of lateral flow and 5.2% of surface runoff in this rural lowland catchment.



Keywords


SWAT model; calibration; validation; lowland watershed.

Full Text:

PDF

References


ARNOLD, J. G.; FOHRER, N. SWAT2000: current capabilities and research opportunities in applied watersheds modelling. Hydrological Processes, v. 19, n. 3, p. 563-572, 2005. DOI: 10.1002/hyp.5611

ARNOLD, J. G.; SRINIVASAN, R.; MUTTIAH, R. S.; WILLIAMS, J. R. Large area hydrologic modelling and assessment. Part I. Model development. Journal of the American Water Resources Association, v. 34, n. 1, p. 73-89, 1998.

BAKER, T. J.; MILLER, S. N. Using the Soil and Water Assessment tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, v. 486, p. 100-111, 2013. DOI: dx.doi.org/10.1016/j.jhydrol.2013.01.041

BIEGER, K.; HÖRMANN, G.; FOHRER, N. Using residual analysis, auto- and cross-correlations to identify key processes for the calibration of the SWAT model in a data scarce region. Advances in Geosciences, v. 31, p. 23-30, 2012. DOI: 10.5194/adgeo-31-23-2012

BIEGER, K. HÖRMANN, G.; FOHRER, N. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Regional Environmental Change. 2013. DOI: 10.1007/s10113-013-0429-3

DWD. Deutscher Wetterdienst. Precipitation data 1975-2012, Climate station Padenstedt and Neumünster. Available at: . Accessed: Apr. 10, 2012.

FINNERN, J. Böden und Leitbodengesellschaften des Störeinzugsgebietes in Schleswig-Holstein: Vergesellschaftung und Stoffaustragsprognose (K, Ca, Mg) mittels GIS. Kiel: Schriftenreihe des Instituts für Pflanzenernährung und Bodenkunde der Universität Kiel, 1997.

GASSMANN, P. W.; REYES, R. R.; GREEN, C. H.; ARNOLD, J. G. The Soil and Water Assessment Tool: Historical development, applications and future research directions. Transaction of the ASABE, v. 50, n. 4, p. 1211-1250, 2007.

GUPTA, H. V.; SOROOSHIAN, S.; YAPO, P. O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, v. 4, n. 2, p. 135-143, 1999. DOI: 10.1061/(ASCE)1084-0699(1999)4:2(135)

HESSE, C.; KRYSANOVA, V.; PÄZOLT, J.; HATTERMANN, F. F. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, v. 218, p. 135-148, 2008. DOI: 10.1016/j.ecolmodel.2008.06.035

KIESEL, J.; FOHRER, N.; SCHMALZ, B.; WHITE, M. J. Incorporating landscape depressions and tile drainages of a Northern German lowland catchment into a semi-distributed model. Hydrological Processes, v. 24, p.1472-1486, 2010. DOI: 10.1002/hyp.7607

KRAUSE, S.; BRONSTERT, A. The impact of groundwater-surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany. Hydrological Processes, v. 21, p. 169-184, 2007. DOI: 10.1002/hyp.6182

LAM, Q. D.; SCHMALZ, B.; FOHRER, N. Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany. Journal of Hydrology, v. 438-439, p. 137-147, 2012. DOI: http://dx.doi.org/10.1016/j.jhydrol.2012.03.011

LAM, Q. D.; SCHMALZ, B.; FOHRER, N. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management. v. 97, p. 317-325, 2010. DOI:10.1016/j.agwat.2009.10.004

LAM, Q. D.; SCHMALZ, B.; FOHRER, N. The impact of agricultural Best Management Practices on water quality in a North German lowland catchment. Environmental Monitoring and Assessment. v. 183, n. 1, p. 351-379, 2011. DOI: DOI 10.1007/s10661-011-1926-9

LI, Z.; HUANG, G.; WANG, X.; HAN, J.; FAN, Y. Impacts of future climate change on river discharge based on hydrological interference: A case study- of the Grand River Watershed in Ontario, Canada. Science of the Total Environment. v. 548-549, p. 198-210, 2016. DOI: dx.doi.org/10.1016/j.scitotenv.2016.01.002

LKN. Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein. Discharge data from gauges Padenstedt, Sarlhusen and Willenscharen. 2012.

LVERMA. Landesvermessungsamt. Digitales Geländenmodell (ATKIS-DGM LiDAR). Gitterweite 5 x 5 m, 2008.

MORIASI, D. N.; ARNOLD, J. G.; VAN LIEW, M. W.; BINGNER, R. L.; HARMEL, R. D.; VEITH, T. L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulation. Transaction of the ASABE, v. 50, p. 885-900, 2007.

NASH, J. E.; SUTCLIFFE, J.V. River flow forecasting through conceptual models. Part 1: a discussion of principles. Journal of Hydrology, v. 10, p. 282-290, 1970. DOI: dx.doi.org/10.1016/0022-1694(70)90255-6

NEITSCH, S. L.; ARNOLD, J. G.; KINIRTY, J. R.; WILLIANS, J. R. Soil and Water Assessment Tool: Theoretical documentation Version 2009. Grassland, Soil and Water Research Laboratory, Agricultural Research Service. Blackland Research Center, Texas Agricultural Experimental Station. 2011 (TR-406). Available at: . Accessed: May 2, 2012.

OPPELT, N.; RATHJENS, H.; BAASE, T. Landnutzungsklassifikation des Einzugsgebietes der oberen Stör auf Basis von Landsat TM Daten aus dem Jahr 2010, Kiel, 2011.

SCHMALZ, B.; FOHRER, N. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Advances of Geosciences, v.21, p.91–98, 2009. DOI: 10.5194/adgeo-21-91-2009

SCHMALZ, B.; SPRINGER, P.; FOHRER, N. Variability of water quality in a riparian wetland with interacting shallow groundwater and surface water. Journal of Plant Nutrition and Soil Science, v. 172, n. 6, p. 757–768, 2009. DOI: 10.1002/jpln.200800268

SCHMALZ, B.; TAVARES, F.; FOHRER, N. Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Advances of Geosciences, v. 11, p.107-112, 2007. DOI: 10.5194/adgeo-11-107-2007

SCHMALZ, B.; TAVARES, F.; FOHRER, N. Modelling hydrological processes in mesoscale lowland river basins with SWAT: capabilities and challenges. Hydrological Science Journal, v. 53, p. 989-1000, 2008. DOI: 10.1623/HYSJ.53.5.989

SHAO, Y.; LUNETTA, R. S.; MACPHERSON, A. J.; LUO, J.; CHEN, G. Assessing sediment yield for selected watersheds in the Laurentian Great Lakes Basin under future agricultural scenarios. Environmental Management, v. 51, n. 1, p. 59-69, 2013. DOI: 10.1007/s00267-012-9903-9

SINGH, J.; KNAPP, H. V.; DEMISSIE M. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Illinois State Water Survey. 2004. Available at: . Accessed: Feb. 9, 2013.

VENOHR, M.; BEHRENDT, H.; KLUGE, K. The effects of different input data and their spatial resolution on the results obtained from a conceptual nutrient emissions model: the River Stör case study. Hydrological Processes, v. 19., p. 3501-3515, 2005. DOI: 10.1002/hyp.5843


Comments on this article

View all comments