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Abstract: Several meteorological centers are investigating methods on how to use the 
new information retrieved from spaceborn Synthetic Aperture Radar (SAR) 
measurements in order to improve the wave forecasting. With this picture in mind, 
and focusing mainly on the problem of the full directional spectrum, the theory of 
wave data assimilation techniques is reviewed. The present work aims as well to 
describe in some detail the three techniques used so far in the assimilation of the two 
dimensional spectrum, that is the Optimal Interpolation Scheme, the Adjoint 
Technique and the Green’s Function Method. 
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1 Introduction 

The aim of data assimilation is to take advantage of the available observations 
by introducing them into modeling procedures, in such a way that the forcing or the 
initial conditions are improved giving better predictions with the model. Data 
assimilation methods have been used for over four decades in meteorological models 
with the objective of improving the forecasting by making use of the widely available 
network of meteo-stations all over the world. Wave modelers, in contrast, have put 
off such an approach mainly due to the sparseness of wave observations. However 
after the advent of satellite oceanography this picture has changed and, in the 
particular case of wind waves, since the 1990’s   measurements of significant wave 
heights from altimeters became available and have been assimilated by several 
weather centers. Nevertheless the exercise of distributing the energy averaged over 
frequency and direction from wave height measurements over the whole two-
dimensional spectrum requires several assumptions to be made, specially about the 
separation of wind sea and swell (THOMAS, 1988; JANSSEN and BIDLOT, 2001; 
VIOLANTE-CARVALHO et al., 2004). 

But with the advent of SAR measurements and with the better understanding 
of the imaging processes, retrieval algorithms have been proposed and the full 
directional spectra extracted from SAR images are now available in quasi-real time 
with global coverage (VIOLANTE-CARVALHO et al., 2005). It is recognized that 
the assimilation of wave observations can improve both the present sea state and, in 
the case of swell, the forecast of the models (see for example LIONELLO et al., 
1995; VOORRIPS et al., 1997; BREIVIK et al., 1998; DUNLAP et al., 1998). 

Data assimilation seeks to improve the forecasting introducing available 
observations into the modeling procedures in order to minimize the differences 
between model estimates and measurements. Both model and data are assumed to 
contain errors, which must be taken into consideration during the assimilation 
procedure. The assimilation of scatter meter, altimeter and SAR data can be applied 
in a combined wind and wave data assimilation procedure to improve the modeled 
data, and its difference from the observed data should be smaller than before. As the 
number of observations to be assimilated is inevitably less than the model grid the 
data inserted at one grid point must be distributed over neighboring points. To avoid 
discontinuities the information should be interpolated using either sequential or 
variational methods. 

Sequential methods (also known as kinematic) are time independent 
assimilations because they make corrections only at the time when an observation is 
available, in general over a synoptic interval of 6 hours. The strategy is to run the 
model forward in time, stopping at intervals to assimilate the available observations 
and then continuing the model run with the corrected state. Therefore winds are 
updated only locally, although waves in a particular grid point are the result of winds 
acting in a large area over a large period of time. These methods are computationally 
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cheaper than variational methods, which make them particularly fit for operational 
use. Some examples of Sequential methods are the Optimal Interpolation 
(LIONELLO et al., 1992; HASSELMANN et al., 1997; VOORRIPS et al., 1997), the 
Kalman filter (Voorrips et al.,1999) and Successive Corrections (BREIVIK et al., 
1998). Due to its widespread use and simplicity, compared to the others sequential 
methods (the Kalman filter and the Successive Corrections), our focus here is to 
provide a comprehensive description of the Optimal Interpolation method. 

The Optimal Interpolation method (OI) is the most commonly used sequential 
method and is implemented operationally at several weather forecast centers in the 
world, using so far only significant wave heights (SWH) derived from altimeters. In 
the assimilation of altimeter wave heights some ad hoc assumptions are imposed on 
the distribution of the energy between wind sea and swell, which are treated 
separately as in second-generation wave models. Thus one of the most powerful 
features of third-generation wave models such as WAM is neglected, that is the 
spectrum has no prescribed form and is free to respond to the source functions. This 
problem arises because a single point wave height measurement has to be distributed 
over the whole two-dimensional spectrum, a restriction that no longer applies to the 
assimilation of retrieved SAR wave spectra. 

Variational (or dynamical) are time dependent methods which take the model 
dynamics into account but have a much higher computational cost compared to 
sequential methods. A best estimation is obtained through the minimization of a cost 
function which is dependent on some control variables, generally the wind input. 

Observations over different time levels are considered in contrast to the single 
time level scheme used in Sequential methods. Hence it is possible to correct the 
wind field that generated a wave component at a time preceding the available 
observations. A swell generated by a distant storm acts over a large area and the 
method needs to compute the dynamical regime to track its position back in space 
and time. So the best model solution not only fits the data available but also is 
consistent with the constraints of the model. Examples of applications in wave data 
assimilation are the Adjoint Model (DE LAS HERAS, 1994; HERSBACH, 1998) and 
the Green’s Function Method (BAUER et al., 1996; 1997). 

An optimal interpolation method was developed for the WAM model and is 
operational at ECMWF since the early 1990’s. Likewise, a variational data 
assimilation scheme has been recently implemented (2004) for use with NCEP 
operational wave model, the NOAA WAVEWATCH-III. In both situations, 
assimilating only SWH derived from altimeters and some buoys, mostly by the US 
coast. More information about assimilation of altimeter wave heights is described in 
Komen et al. (1994, chap. 6). A comprehensive description of assimilation schemes is 
also presented in de las Heras (1994), while the main purpose of the present work is 
to review the state of the art of techniques for assimilation of the two dimensional 
wave spectrum, for instance extracted from SAR images or from buoy 
measurements. 
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The structure of the paper is as follows. In section 2 the main aspects of the 
theory of wave data assimilation are presented. Sections 3, 4 and 5 discuss in more 
details, respectively, the three most applied wave data assimilation techniques: 
Optimal Interpolation, Adjoint Model and Green’s Function. The final remarks are 
presented in section 6. 

2 Theoretical Basis of Wave Data Assimilation 

The evolution of wave energy as a function of frequency, direction, position 
and time E ( f , θ, r, t )is represented by the energy balance equation (KOMEN et al., 
1994) which for deep water reads 
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where cg is the group velocity and the right hand side of (1) represents the source 
and sink terms due, respectively, to wind input, nonlinear interactions and white-
capping dissipation. However it is more convenient for data assimilation purposes to 
rewrite (1) in a matrix form where a set of state variables is forced by a set of control 
variables (KOMEN et al., 1994): 
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where a state vector xt is the wave energy E at each direction, frequency and grid 
point at time t and a control vector ut, in general the wind speed, is also defined over 
each point at time t. The nonlinear functional F represents the physics of the wave 
model and must be linearized in order to describe how a perturbation in the control 
vector is dynamically represented by a perturbation in the state vector. Hence 
performing a Taylor expansion of (2) and retaining only the terms up to the first-
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Therefore the nonlinear energy balance equation (1) is rewritten in matrix form 
(2) and its linear representation (3) describes how perturbations in the state vector 
(the wave energy E) are determined by perturbations in the wind field, which is the 
way that variational methods can track back a swell component both in time and in 
space. 
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Deviations between observations and model data are used to obtain the best 
estimate of the wave model. In order to minimize such diferences, the wave model 
output is modified by adjusting its control variables—the initial conditions or the 
wind field. The best solution is the one which minimizes a cost function that consists 
basically of quadratic diferences between observed and modeled data (respectively dº 
and d). Considering the probability distribution P(d - do; c) given a set of control 
variables c and assuming that the distribution of the data error representing the 
model is Gaussian around its maximum (which is reasonable using the Central Limit 
Theorem) it follows that: 

))(
2

1
exp()( 200 ddddP −−≅−  (4) 

The maximum of P corresponds to the minimum of the exponent, which 
means that the maximum probability or most likely state is associated with the 
minimum of the cost function J, which in matrix notation reads 

)()( 00 ddMddJ T −−=  (5) 

where M is the expected variance in the model/data error. The calculation of 
such matrices requires long term statistics of the error covariance of the observations 
and predictions. Because the true states are not known in most cases, empirical 
relations are used to approximate M. Diferent weights of the error covariance matrix 
M are associated with the corrections depending on the distance between the model 
and observation locations, instrumental errors and model errors. In addition the cost 
function (5) can be written in a more general form adding terms penalizing diferences 
between any a priori information available. 

The goal of any data assimilation scheme is to minimize the cost function J 
setting the control variables in order to find the values that yield the minimum 
diference between modeled data and observations. In most wave data assimilation 
studies the control variables have been defined as the wind field, although any other 
parameter that might influence the state vector could be used, as for example, the 
superficial current field or the initial wave field. The minimization of the cost 
function J involves the inversion of (5) using the linearized wave model equations (3). 
However this becomes a non-trivial exerercise due to the size of the state vector, 
with dimension of the order of 107 in the case of global wave models. Therefore one 
seeks the minimization of (5) searching for the maximum efficiency and the 
minimum computational cost. 

When all available observations are used for the minimization of the cost 
function the assimilation scheme is denominated a variational method. In this case 
the inversion of (5) will require a time-dependency of the wave model equations 
since observations at a later time t will have to be related to the wave state at some 
previous time t - 1. 
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This approach allows the correction of the wind field at some point and time 
away from the observations, for example tracking back a swell component, but 
evidently with a high computational cost. On the other hand if only the observations 
at a single time level are used for the minimization of the cost function the approach 
is denominated a sequential method. Much simpler and computationaly cheaper this 
method permits the correction only of the wind associated with the wind sea, and 
hence only locally. In the following sections we will describe in more details the 
characteristics of sequential and variational methods and their applications in wave 
data assimilation studies. 

3 The Optimal Interpolation Scheme 

The Optimal Interpolation Scheme (OI) is the widest used method for wave 
data assimilation due especially to its simplicity and low computational cost 
compared with other techniques. In this scheme the available SAR spectral 
information is spread over the grid points using statistical interpolation techniques 
without taking into account the model constraints. The assimilation is performed in 
two steps. First a best-guess or analyzed field is calculated by Optimal Interpolation 
and then the corrections applied to the wind sea part of the spectrum are used to 
correct the local wind. 

The analyzed or best estimate value x = (xi) of the true state vector )( t
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t xx =  

is a linear combination of the model first-guess vector )( f
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previous run and the weighted errors between the observed data do and the 
corresponding first-guess values df computed from the model: 
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where i represents each component of the analyzed field, j the component of 
every observation and nobs denotes the number of observations. Wij are the 
interpolation weights determined by the minimization of the mean square error 
between the true state vector and its best estimation  

>−=< 2)( txxJ  (7) 

This cost function (equation 7) is minimized to obtain the interpolation weight 
Wij (angle brackets meaning mean values over a large number of realizations). This 
yields that Wij is a function of the covariance error matrices of the observations and 
the first-guesses (Komen et al., 1994; Hasselmann et al., 1997). The problem that 
arises is the computation of these matrices, since long term statistics are needed in 
order to compare the model predictions with observations. In general empirical 
relations are used to overcome this problem, and in Voorrips et al. (1997) 2 years of 
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comparison of model results with buoy data are used to determine more refined 
matrices. 

The analyzed data are the result of the Optimal Interpolation scheme (6) and 
can be applied to diferent types of data, for instance wave heights from 
altimeters,buoy data and two-dimensional spectra retrieved from SAR images (see for 
example the description of algorithms for the retrieval of SAR spectra in Hasselmann 
and Hasselmann, 1991; Krogstad et al., 1994; Hasselmann et al., 1996; Mastenbroek 
and de Valk, 2000). In Hasselmann et al. (1997) the first step in the assimilation 
procedure is the optimal interpolation of the two-dimensional SAR wave mode 
spectrum obtained every 30 s or 200 km along the satellite track. Seeking operational 
e ciency the number of variables involved in the problem is reduced by partitioning 
the 2-D spectrum, using a technique introduced by Gerling (1992), in general into 3 
or 4 wave systems (wind sea, swell, mixture (composition) of wind sea and swell and 
old wind sea). The wind sea systems are identified by comparing the phase velocity 
and direction of the spectral peak with the wind speed and direction. Each wave 
system is assumed to be generated by diferent physical events, and so are 
uncorrelated with each others, and each is represented by few parameters: SWH (or 
spectral energy), mean direction and mean frequency (see more details in 
VIOLANTE-CARVALHO et al., 2005). Each wave system of diferent spectra is 
cross-assigned with its counterpart—a wind sea system of a first-guess spectrum is 
correlated with the same system in the observed spectrum. If the wave system of the 
first-guess spectrum does not have a match in the observed spectrum it is 
superimposed on the analyzed spectrum. On the other hand, if the observed 
spectrum does not have a match in the first-guess spectrum it is superimposed on the 
first-guess spectrum. So a correspondence between all wave systems of the analyzed 
and observed spectra is reached and the wave systems that are cross-assigned are 
optimally interpolated generating an analyzed field of the parameters. 

At this point the second step in the assimilation procedure can be implemented 
with the update of the spectrum and the correction of the wind field. The first-guess 
spectrum is rotated and rescaled to agree in direction, frequency and energy with the 
parameters derived from the interpolation and the new analyzed spectrum is created. 

The wind is corrected using scaling power laws for a growing wind sea 
spectrum under quasi-equilibrium growth conditions (HASSELMANN et al., 1976). 
The wind field derived after the wave assimilation is interpolated with the first-guess 
wind yielding an updated wind field. The wave model can now be forced by the 
updated wind field and the diferences between the model and the SAR-retrieved 
wave spectrum are expected to be smaller. 

A test run over a period of two months of assimilation of directional spectra 
extracted from ERS-1 SAR data is presented in Hasselmann et al. (1997). In that 
work the optimal interpolation scheme used by ECMWF in the assimilation of 
altimeter data was modified and applied to the assimilation of the full spectrum 
retrieved from SAR data. Another example of the application of OI is presented in 
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the work of Voorrips et al. (1997), where wave parameters extracted from pitch-roll 
buoys in the North Sea are assimilated into a regional version of the WAM model. In 
Breivik et al. (1998) a routine for the assimilation of retrieved SAR spectra during a 
test period of 4 months was run parallel to the regular operation of the Norwegian 
Meteorological Institute (DNMI) second generation wave model using another 
sequential scheme, the Successive Corrections method. Successive Corrections is 
used operationally at DNMI so far assimilating only wave heights (BREIVIK and 
REISTAD, 1994). The OI has also been used operationally in several meteorological 
centers in their wave forecasting systems. 

Since August 1993 ERS-1 altimeter wave height data have been assimilated by 
ECMWF into their WAM wave model (Lionello et al., 1992) while studies for the 
implementation of assimilation of the full directional SAR wave spectra are ongoing. 
Observations of SWH from the ERS-2 altimeter are assimilated using OI by the 
British Meteorological Oce (UKMO) in Bracknell into their second generation wave 
model (THOMAS, 1988; LORENC et al., 1991) and at the present the assimilation 
of retrieved SAR wave spectra is an active line of research in this center (James 
Gunson, personal communication). 

On the whole the previous works have shown that the impact of assimilation 
of SAR spectra into wave models was very modest or neutral. The reason or reasons 
for this lack of improvement in the forecasting are not clear. One possibility is that 
the wave models have attained a level of sophistication where there is no clear 
improvement of the forecasting because of data assimilation. This seems unlikely to 
be the case. 

Even third generation models such as WAM with state of the art 
representation of the physics of wave evolution have room for improvement, 
specially in the description of the low frequency part of the spectrum. The less well 
known wave dissipation source function causes a poorer representation of swell 
compared to the better description of the wind sea part of the spectrum (Komen et 
al., 1994). Another possible cause could be that methods to extract wave spectra 
from SAR images are not dealing properly with the complexities of the SAR imaging 
mechanisms and hence yielding poor retrievals (Violante-Carvalho et al., 2005). In 
addition it is not clear if the lack of improvement in the assimilation exercises are due 
to the assimilation schemes themselves or to the far fewer SAR observations (both in 
temporal and spatial coverage) compared to the number of model grid points. 

However, besides the fact that these works have found no clear improvement 
in the forecasting, they have also used significant wave heights as independent data 
for the validation of the assimilation (VIOLANTE-CARVALHO and ROBINSON, 
2004). The reason is that there is no other source of directional wave information 
over oceanic basins apart from SAR data. Most of the buoys deployed in the ocean 
measure only the surface elevation and hence only the frequency spectrum. The only 
source of wave information with coverage similar to SAR data is derived from 
altimeters, but the problem of using SWH to assess assimilation experiments is the 
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averaging property of this parameter. More insights about the impact of the 
assimilation into the forecasting could be gained comparing the directional and 
spectral misfit between model and another source of directional wave information 
such as directional buoys. Another point worth mentioning is that the only new 
information added through the assimilation of SAR data is the the low frequency part 
of the spectrum since the wave model spectra are used to extend the spectral 
information beyond the high frequency cut-o . Therefore retrieval methods that do 
not rely on the wave model spectrum itself as first guess, like the cross-spectral 
method by Engen and Johnsen (1995), could bring more information to the 
assimilation procedure and hence improve the forecasting. 

4 The Adjoint Technique 

The basic idea of data assimilation in variational methods is to fit model 
predictions to observations by modifying the model input rather than the model 
output. The diferences between the model output and observations are measured by 
a cost function, and the assimilation is performed in order to minimize this cost 
function respecting the constraints of the model. The change in the wind field 
needed to generate a change in the wave field is determined by inverting the wave 
model equation, which has a very high computational cost specially for global 
operational implementation. The purpose of the Adjoint Method is to determine the 
minimum of the cost function without explicitly inverting the model equations, in 
such a way that the model equations and the adjoint model equations are solved in an 
iterative minimization loop. 

Following the notation proposed by Komen et al. (1994) and describing the 
general data assimilation problem, the cost function J is constructed from three terms 

taking into account the diference between observed and modeled data J
d

, the misfit 

between the model data and first-guess model values j
f

 and the diference between 

the control variables and first-guess control variables j
c

 (such the wind input and 
the initial wave field). J is a quadratic function that penalizes deviations of the model 
from observations and first-guesses, and its minimization yields the values of the 
control variables that make the model results fit best to the data and first-guesses 
available. 

cfd JJJJ ++=  (8) 

Since J is positive definite, it is diferentiable and always has a point of 
minimum. 

Then the variations with respect to the control variables ��J /�c� is called the 
gradient of the cost and must be zero at its minimum. 

The minimization of (8) is very time consuming in computational terms 
(actually the linear form of J is calculated by direct minimization) since the model 
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data are implicit functions of the control variables. To avoid the direct inversion of 
the model equations, the Lagrange function L is constructed using the multipliers 
method 

iiEJL λ+=  (9) 

 

by adding the Lagrange multiplier § times the models equations (in matrix 
representation) E to the cost function J (de las Heras, 1994; Komen et al., 1994). 

Taking into consideration that the function L is odd its extremum has a 
stationary point that corresponds to the minimum of the cost function. More 
specificaly, the total derivative of J is the same as the partial derivative of L with 

respect to the control variables ��L/�c�and both vanish at the point of minimum. 
This point can be determined by taking the partial derivatives of L with respect to all 
the arguments of the problem and setting the results to zero. The variation of the 
Lagrange function with respect toλ 
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yields the model equations, which can be solved forward in time. The derivative of 
with respect to the model data 
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is called the adjoint of the wave model and can be solved backward in time. As 
has already been pointed out is the gradient of J or the cost-function gradient. 

The problem of solving the model equations explicitly in order to compute the 
cost-function gradient is avoided by solving the linearized model equations (10—12) 
in an iterative way. As the gradient will be zero only for specific values of the control 
variables they are used to search the minimum of the cost. Choosing a first-guess for 
the control variables and solving (10) the solution is the model parameter of interest 
and the cost function J is determined. The adjoint model (11) can be solved 

backward in time to yield the value of �  and the gradient of J can be extracted using 
(12). 

0=∂
∂

c
L  (12) 

If the value reached is not acceptable, the control variables can be updated and 
the procedure repeated until the minimum is approached. Multiple integrations of 
the model equations and the adjoint model equations are required, which can have a 
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computationally expensive cost in particular for third-generation models in global 
runs. 

The complication of deriving the adjoint model equations from the model 
equations was avoided by Hersbach (1998). In that work an adjoint model compiler 
was used to compute the code automatically line by line generating the adjoint of the 
full-dimensional WAM. The adjoint was used for inverse modeling with the object to 
get better estimates of several model parameters in the sink and source terms. In this 
way it is possible to determine whether misfits between model and data are caused by 
wrong wind inputs or by deficiencies in the model formulation (or in the linearization 
of the model equations). So far the adjoint method has been applied in wave data 
assimilation only to the simpler inverse modeling exercise, with the exception of de 
las Heras (1994) who worked with a one-dimensional version of the WAM to 
assimilate wave heights using synthetic data. For short period tests (of one day) the 
results obtained by de las Heras (1994) using the adjoint method were superior than 
the results from twin experiments using a simpler optimal interpolation method. For 
periods longer than one day the behavior of the gradient is more complex and the 
value of the minimum of the cost function was not attained in many cases. 

5 The Green’s Function Method 

In the Adjoint Method the computationally expensive direct inversion of the 
model equations is avoided by solving the linearized model equations in an iterative 
way. 

Despite that, this method still requires an order of magnitude more computer 
time than the integration of the wave model which seems to be very costly for global 
operational implementation. The Green’s Function Method on the other hand also 
avoids the direct inversion of the model equations, but does so by relying on a 
number of physical approximations. The wave spectrum perturbations are expressed 
by the impulse response (or Green’s) function over the wind field perturbations, and 
are inverted without the need of iterations, implying a computational time of the 
same order as the integration of the model. 

The main assumption is that the wind perturbations that generate the spectrum 
perturbations are associated with a small region in space and time and therefore can 
be approximated by a -function. This hypothesis is intuitively plausible but it lacks 
mathematical rigor compared to the Adjoint Method. Once the wave component 
becomes swell the wind speed has no more influence on it, but on the other hand in 
the generation region its presence is important during the wave growth. The wave 
spectrum response to the wind input is to shift the spectral peak towards lower 
frequencies through nonlinear wave to wave interactions, transferring energy from 
the region just beyond the spectral peak to the region below the spectral peak which 
maintains a quasi-equilibrium spectral shape. Thus the impact of the wind is scattered 
over higher and lower frequencies through this stabilizing efect of the spectrum 
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shape, being only retained and transported when the wave component leaves the 
generation area, that is as swell, propagating undisturbed. So the most sensitive 
region of the wave spectrum is the one that last received the input from the wind in 
the transition between wind sea and swell. 

The assimilation scheme consists of minimizing the diferences between model 
data and observations through the following cost function (BAUER et al., 1996) 
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where d are the first-guess of the model data and the respective observed value, 
dr is the modification after the optimization, up and vp are the changes in the wind 

field in x and y components in a point p in space, nobs  is the number of 
observations, d r is the standard deviation of the measurements and C is a weighting 
factor. The Green’s Function Method computes the model modifications dr which 
are correlated with the modifications in the wind input up and vp respecting the 
constraints of the model. 

In order to minimize the cost function, (13) must be expressed in terms of the 
control variables up and vp, in a way that the response of the wave spectrum x 
described by the perturbations in the wind field u is expressed by the Green’s 
function. In practice, the integration of the response function requires the inversion 
of the Green’s function operator, which is not feasible due to the complexity of this 
matrix which involves the whole source function. Relying on the assumption that 
only a specific small region of the wind field causes a perturbation in a component of 
the wave spectrum, the Green’s function can be approximated by a δ - function 
representing the relation between the wind changes (up, vp) = [u(xp, tp), v(xp, tp)] in a 
point in the past (xp, tp) and the spectral energy changes in the observation point (xr, 
tr). The point (xp, tp) determines the influence point or the point of the last wind 
input that must be altered to yield the spectral modification in the component k and 
point xr. The influence point (xp, tp) can be determined by tracing back the wave 
component using the wave age along the great circle path at its group velocity cg. So 
far the Green’s function assimilation method was run for synthetic wind cases (Bauer 
et al., 1996) with no rerun of the wave model in order to check the wave field 
corrections. A more realistic case was applied to determine the wind field corrections 
during a storm in the North Atlantic (BAUER et al., 1997). The results were 
compared with the Optimal Interpolation scheme and the wind corrections have a 
general good agreement, but again a comparison with the new model output 
generated by the updated wind field was not performed. Although quite attractive 
because it is less expensive in computational terms, the Green’s function method 
relies on some simplifications, the strongest being about the localization of the wind 
region of influence. Perturbations in the wave spectrum are assumed to be caused by 
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perturbations in the wind field in some specific region (in space and time) that are 
approximated by a -function, a rather unrealistic supposition. 

In addition the corrections to the wind are estimated using observations 
available during one time level in general of 6 hours—like sequential methods—
rather than over different times—like variational methods. However since the 
constraints of the model are maintained the wave spectrum computed after the 
assimilation is consistent with the model dynamics. 

6 Discussion 

Significant wave heights measured from satellite altimeters have so far been the 
most widely used information applied in wave models at several weather centers. 
However significant wave height is a mean parameter. Therefore a greater impact is 
expected on the wave analysis using techniques for the assimilation of the full two-
dimensional spectrum due to the detailed spectral and directional information 
derived from this information. Global observations of directional spectra are now 
available with the SAR onboard ERS-1 and ERS-2 and more recently with the launch 
of ENVISAT carrying the Advanced Synthetic Aperture Radar (ASAR). This fact has 
opened up challenging possibilities and several studies are undergoing on how to best 
exploit this information to improve the wave forecasting. In the present work a 
comprehensive discussion of the theory of wave data assimilation is presented with a 
review of several assimilation studies developed in the last few years. Futhermore the 
techniques used so far in the assimilation of the two-dimensional spectrum are 
examined in more depth. Research in the area of wave data assimilation is in its early 
stages of development and implementation but some works have already indicated 
some exciting prospects for the future. One of the main issues of working with the 
assimilation of the two-dimensional spectrum is the high number of degrees of 
freedom involved in the problem. The approach of partitioning the spectrum into a 
number of wave systems each one represented by a set of parameters like mean 
direction of propagation, mean energy (SWH) and mean frequency seems reasonable 
and suits the assimilation problem very well. Another point that deserves to be 
mentioned is the calculation of the covariance matrices that requires long term 
statistics of the differences between observation and model. In the study by Voorrips 
et al. (1997) two years of buoy measurements in the North Sea were used to estimate 
the interpolation weights. However, specially due to the lack of long term 
observations, these interpolation weights are generally approximated by exponential 
expressions of the ratio between the distance model-observation and a correlation 
length scale. Thus an improvement of the estimation of the error covariance matrices 
necessarily requires several runs of the model to compute the statistical correlations. 

A very particular characteristic of assimilating data into wave models which has 
no counterpart in meterorological or oceanic models is the distinction that must be 
imposed between wind sea and swell. Wind waves are very sensitive to the wind 
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input which ensures that any correction of the wind sea part of the spectrum, if not 
accompanied by the respective correction in the wind input, reverts quickly to its 
original (incorrect) state. Therefore the correction of the wind sea part of the 
spectrum has only local influence. This became clear in the very first exercises on 
wave data assimilation which pointed out that combined wind and wave assimilation 
schemes, that is coupled wind-wave models, would be necessary for optimal 
assimilation purposes. 

But the use at the present moment of coupled models is a very ambitious task 
and it seems that it will not be feasible, at least operationally, in the near future. The 
effect of swell corrections, on the other hand, can be felt over entire ocean basins 
over the period of several days. Once the wind waves leave the generation area, 
becoming swell, they propagate almost undisturbed and the analyzed (corrected) 
components will have a positive impact on the forecasting. In addition due to 
nonlinearities in the imaging processes only the low frequency part of the spectrum, 
before a high wavenumber cut-off, is directly mapped onto SAR images. As a 
consequence, if the main objective is to improve the wave forecasting rather than 
correct the wind input, it seems reasonable to assimilate only the swell part of the 
spectrum which is in the end the only information directly measured by SAR. 
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