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Resumo: Este trabalho contribui para a existência de soluções para inclusões dinâmicas
em escalas de tempo. Mais especificamente, prova um resultado de existência e aproximação
de soluções para inclusões dinâmicas em escalas de tempo. O resultado obtido é uma gen-
eralização da existência e aproximação de soluções para inclusões diferenciais.
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Abstract: This work contributes to the existence of solutions for dynamic inclusions in
time scales. More specifically, it proves a result of existence and approximation of solutions
for dynamic inclusions in time scales. The result obtained is a generalization of the existence
and approximation of solutions for differential inclusions.
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1 Introduction

Recently, considerable attention has been given to the study of the existence of solutions
for dynamic inclusions in time scales. This can be witnessed by works [1, 2, 3, 4, 5, 6, 7]. The
work [1] proves the existence of solutions to first order dynamical inclusions in time scales
with general boundary conditions. [2] investigates the existence of solutions and extrernal
solutions for a first order impulsive dynamic inclusion on time scales. [3] proves the existence
of solutions for second order dynamic inclusions in time scales with boundary conditions.
The work [4] proves the existence of solutions for first order dynamic inclusions on time
scales with nonlocal initial conditions. [5] studies existence results for systems of first order
inclusions on time scales with an initial or a periodic boundary value condition. [6] studies
the existence of solutions to nabla differential equations and nabla differential inclusions on
time scales. [7] provides existence of solutions to a system of dynamical inclusions in time
scales.

To the best of our knowledge, the approximation of solutions for dynamic inclusions in
time scales has not been considered in the literature of time scales. In this work we have
established a result of existence and approximation of solutions for dynamic inclusions in
time scales.
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2 Background and preliminaries

In this section, we gather basic concepts and results that will be useful in the development
of the work.

We make the following conventions:

(i) if x ∈ Rn we denote the Euclidean norm of x by ‖x‖;

(ii) B is the closed unit ball {x ∈ Rn : ‖x‖ ≤ 1};

(iii) given a compact subset E ⊂ R and a function g : E → Rn, we will indicate by ‖g‖∞
the supremum norm.

2.1 Time scales

A time scale is a nonempty closed subset T ⊂ R of the real numbers. An arbitrary
bounded time scale T will be taken, such that a = minT and b = maxT. We also suppose
that a < b.

We define the forward jump operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t}

and the backward jump operator ρ : T→ T by

ρ(t) = sup{s ∈ T : s < t}.

Here we assume that inf ∅ = supT and sup ∅ = inf T.

Lemma 1 (Cabada [8]). There exist I ⊂ N and {ti}i∈I ⊂ T such that

RS := {t ∈ T : t < σ(t)} = {ti}i∈I ,

where RS stands for right scattered points of the time scale T.

Define the function µ : T→ [0,+∞) by

µ(t) = σ(t)− t.

If A ⊂ R, we define the set AT by AT = A ∩ T. We define Tκ := T \ (ρ(supT), supT]T.
Consider a function f : T → R and t ∈ Tκ. If ξ ∈ R is such that, for all ε > 0 there

exists δ > 0 obeying

|f(σ(t))− f(s)− ξ(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ (t− δ, t+ δ)T, we say that ξ is the delta derivative of f at t and we denote it by
ξ := f∆(t).

Now, consider a function f : T → Rn and t ∈ Tκ. We say that f is ∆-differentiable
at t if each component fi : T → R of f is ∆-differentiable at t. In this case f∆(t) =
(f∆

1 (t), ..., f∆
n (t)).

The next result is proven in [9] for scalar valued functions. But the generalization for
vector valued functions is straightforward.
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Theorem 1 (Bohner [9]). Consider a function f : T→ Rn and t ∈ Tκ. Then the following
statements hold:

(i) If f is ∆-differentiable at t then f is continuous at t.

(ii) If f is continuous at t and σ(t) > t, then f is ∆-differentiable at t. Furthermore,

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If σ(t) = t, then f is ∆-differentiable at t if and only if there exists the limit

lim
s T−→ t

f(t)− f(s)

t− s

as an element of Rn. In that case

f∆(t) = lim
s T−→ t

f(t)− f(s)

t− s
.

(iv) If f is ∆-differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

2.2 ∆-measurable sets

Below, we recall the σ-algebra of subsets of the time scale T.
Denote by F the collection of all subintervals of T given by [ã, b̃)T = {t ∈ T : ã ≤ t < b̃},

where ã, b̃ ∈ T. The interval [ã, ã)T is understood as an empty set.
Take an arbitrary subset E ⊂ T. If there exists at least one sequence of intervals

[aj , bj)T ∈ F such that E ⊂
⋃
j [aj , bj)T, the outer measure of E is defined by

m∗(E) = inf
{ +∞∑
k=1

(bk − ak) : E ⊂
⋃
k

[ak, bk)T, [ak, bk)T ∈ F
}
.

It there is no such a cover of E we set m∗(E) = +∞.
The outer measure defined on R will be denoted by λ∗.
Properties of the outer measure m∗ can be founded in [8], [10], and [11]. Below, we have

considered some of these properties.

Lemma 2 (Guseinov [10]). If c, d ∈ T and c < d then

m∗([c, d)T) = d− c.

Using [11] one can prove the following lemma.

Lemma 3 (Royden [11]). If {Ei}i∈N is a sequence of subsets of T, then

m∗(

+∞⋃
i=1

Ei) ≤
+∞∑
i=1

m∗(Ei).
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Lemma 4 (Cabada [8]). Let E ⊂ [a, b)T be such that E ⊂ {t ∈ T : σ(t) = t}. Then

m∗(E) = λ∗(E).

Definition 1. A set E ⊂ T is said to be ∆-measurable (Lebesgue ∆-measurable) if

m∗(A) = m∗(A ∩ E) +m∗(A ∩ (T \ E))

for each A ⊂ T.

Proposition 1 (Cabada [8]). Take E ⊂ T. Then E is ∆-measurable if and only if E is
Lebesgue measurable.

Thus we have the following result.

Theorem 2. The family of ∆-measurable sets is a σ-algebra of T.

We will indicate by ∆ the σ-algebra of ∆-measurable sets of T. We call the measure
m∗ : ∆→ [0,+∞] of ∆-measure of Lebesgue and denoted it by m∗ ≡ µ∆.

Let E ⊂ T. We say that a statement P holds ∆-almost everywhere (∆-a.e.) on E, if the
set N given by

N = {t ∈ E : P does not hold at t}

satisfies µ∆(N) = 0.

2.3 ∆-measurable functions and ∆-integrability

We say that a function f : T → [−∞,+∞] is ∆-measurable if for each r ∈ R the set
{t ∈ T : f(t) < r} is ∆-measurable. A vector valued function f : T → Rn is said to be
∆-measurable if each component fi : T→ R of f is ∆-measurable.

Given a function f : T→ Rn define f̃ : [a, b]→ Rn by

f̃(t) =

{
f(t), t ∈ T
f(ti), t ∈ (ti, σ(ti)) for some i ∈ I

where I ⊂ N and {ti}i∈I ⊂ T are such that {t ∈ T : t < σ(t)} = {ti}i∈I .

Proposition 2 (Cabada [8]). Consider a function f : T→ Rn. Then f is ∆-measurable if
and only if f̃ is L-measurable.

Proof. This result is stated in [8] for scalar valued functions f . However, it can be verified
that it remains valid for vector valued functions.

For functions f : T → R̄ the integration concept can be found, for example, in [11] and
[14]. The integral of a function f : T→ R̄ over a set E ∈ ∆ is denoted by∫

E

f(s)∆s.

We call this integral the Lebesgue ∆-integral of f over E and denote the set of functions
f : T → R which are ∆-integrable over E by L1(E). If f : T → Rn is a ∆-measurable
function and E ∈ ∆, f is integrable over E if each component fi : T→ R is integrable over
E. Denote by L1(E,Rn) the set of functions f : T→ Rn ∆-integrable over E.
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Next, a result that relates the Lebesgue ∆-integral in time scales and the usual Lebesgue
integral is presented.

If E ⊂ T we define the set Ẽ by

Ẽ = E ∪
⋃
i∈IE

(ti, σ(ti))

where
IE := {i ∈ I : ti ∈ E ∩RS}.

The following result is provided in [8] for scalar valued functions. However, one can see
that it holds for vector valued functions as stated below.

Theorem 3 (Cabada [8]). Take a ∆-measurable set E ⊂ T such that b 6∈ E. Let f : T→ Rn
be a ∆-measurable function and f̃ : [a, b]→ Rn the extension of f previously defined. Then
f ∈ L1(E,Rn) if and only if f̃ ∈ L1(Ẽ,Rn). In this case∫

E

f(s)∆s =

∫
Ẽ

f̃(s)ds.

The vector space L1([a, b)T,Rn) equipped with the norm

‖f‖1 =

∫
[a,b)T

‖f(s)‖∆s

is a Banach space, as stated below.

Theorem 4. L1([a, b)T,Rn) is a Banach space.

We also have the following theorem.

Theorem 5. Let {fj} be a sequence in L1([a, b)T,Rn) and f ∈ L1([a, b)T,Rn) such that
‖fj − f‖1 → 0. Then there exists a subsequence {fjm} satisfying

(i) fjm(t)→ f(t) for ∆-a.e. t ∈ [a, b)T;

(ii) ‖fjm(t)‖ ≤ h(t) ∀ m and for ∆-a.e. t ∈ [a, b)T, where h ∈ L1([a, b)T,Rn).

Theorems 4 and 5 are obtained similar to [[12], Théorème IV.8.] and [[12], Théorème
IV.9.], respectively.

We will use the following elementary result in the proof of lemma 6.

Lemma 5. Let k : [a, b] → R be a function in L1([a, b]). For each j ≥ 1 and t ∈ [a, b] we
have ∫ t

a

k(s1)

∫ s1

a

k(s2) · · ·
∫ sj−1

a

k(sj)dsj · · · ds2ds1 =

[ ∫ t
a
k(τ)dτ

]j
j!

where s0 = t.

Lemma 6. Consider a function k : T→ [0,∞) in L1([a, b)T). If

η(t) =

∫
[a,t)T

k(s1)

∫
[a,s1)T

k(s2) · · ·
∫

[a,sj−1)T

k(sj)∆sj · · ·∆s2∆s1

84



SANTOS, I. L. D. dos

we have

η(t) ≤

[ ∫
[a,t)T

k(τ)∆τ

]j
j!

(1)

for all j ≥ 1 and all t ∈ T, where s0 = t.

Proof. Define g : T→ [0,∞) by g(s) =
∫

[a,s)T
k(τ)∆τ . Then∫

[a,t)T

k(s1)

∫
[a,s1)T

k(s2)∆s2∆s1 =

∫
[a,t)T

k(s1)g(s1)∆s1

=

∫
[a,t)

k̃(s1)g̃(s1)ds1.

If s1 ∈ T it follows that

g̃(s1) = g(s1) =

∫
[a,s1)T

k(s2)∆s2 =

∫
[a,s1)

k̃(s2)ds2.

However, if s1 6∈ T let i ∈ I be such that s1 ∈ (ti, σ(ti)). We have

g̃(s1) = g(ti) =

∫
[a,ti)T

k(s2)∆s2

=

∫
[a,ti)

k̃(s2)ds2 ≤
∫

[a,s1)

k̃(s2)ds2

and then ∫
[a,t)T

k(s1)g(s1)∆s1 ≤
∫

[a,t)

k̃(s1)

∫
[a,s1)

k̃(s2)ds2ds1

=
[
∫

[a,t)
k̃(τ)dτ ]2

2!
=

[
∫

[a,t)T
k(τ)∆τ ]2

2!
.

Suppose the lemma is valid for j ≥ 2. Below we find that the lemma is also valid for j + 1
and therefore by mathematical induction we conclude that the formula 1 is valid for all j.

Let g : T→ [0,∞) be defined by

g(s1) =

∫
[a,s1)T

k(s2) · · ·
∫

[a,sj)T

k(sj+1)∆sj+1 · · ·∆s2.

If s1 ∈ T we have

g̃(s1) = g(s1) ≤
[
∫

[a,s1)T
k(τ)∆τ ]j

j!
=

[
∫

[a,s1)
k̃(τ)dτ ]j

j!

and if s1 6∈ T let i ∈ I be such that s1 ∈ (ti, σ(ti)), thence

g̃(s1) = g(ti) ≤
[
∫

[a,ti)T
k(τ)∆τ ]j

j!

=
[
∫

[a,ti)
k̃(τ)dτ ]j

j!
≤

[
∫

[a,s1)
k̃(τ)dτ ]j

j!
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and thus ∫
[a,t)T

k(s1)g(s1)∆s1 =

∫
[a,t)

k̃(s1)g̃(s1)ds1

≤
∫

[a,t)

k̃(s1)
[
∫

[a,s1)
k̃(τ)dτ ]j

j!
ds1

=
[
∫

[a,t)
k̃(τ)dτ ]j+1

(j + 1)!
=

[
∫

[a,t)T
k(τ)∆τ ]j+1

(j + 1)!
.

2.4 Absolutely continuous functions in time scales

A function f : T → Rn is absolutely continuous if given ε > 0 there exists δ > 0 such
that

N∑
i=1

‖f(bi)− f(ai)‖ < ε

whenever ai ≤ bi and {[ai, bi)T}Ni=1 are disjoint intervals obeying

N∑
i=1

(bi − ai) < δ.

Theorem 6 given below is established in [13] for scalar valued functions. However, it is
easy to see that it can be extended for vector valued functions as stated below.

Theorem 6 (Cabada [13]). A function f : T → Rn is absolutely continuous if and only if
the following assertions are valid:

(i) f is ∆-differentiable ∆-a.e. on [a, b)T and f∆ ∈ L1([a, b)T,Rn);

(ii) for each t ∈ T we have

f(t) = f(a) +

∫
[a,t)T

f∆(s)∆s.

We say that the function f : T→ Rn is an arc if it is absolutely continuous.
In the next lemma, we get a result on absolutely continuous functions in time scales.

Proposition 3 (Santos [7]). Let f : T→ [0,+∞) be a function in L1([a, b)T). Given ε > 0
there exists δ > 0 such that, if A ∈ ∆ and µ∆(A) < δ then∫

A

f(s)∆s < ε.

Lemma 7. If v ∈ L1([a, b)T,Rn) and x0 ∈ Rn, then the function z : T→ Rn given by

z(t) = x0 +

∫
[a,t)T

v(s)∆s

is an arc. Furthermore
z∆(t) = v(t) ∆− a.e. t ∈ [a, b)T.
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Proof. The function z is an arc because of Proposition 3.
Let t ∈ [a, b)T be such that there exists the delta derivative z∆(t). If σ(t) > t we have

z∆(t) =

∫
[a,σ(t))T

v(s)∆s−
∫

[a,t)T
v(s)∆s

µ(t)

=

∫
[t,σ(t))T

v(s)∆s

µ(t)
= v(t).

If σ(t) = t and t is a Lebesgue point of ṽ, consider a sequence {tj}j∈N ⊂ [a, b)T such that
tj ↓ t. It follows from Theorem 3 and property Lebesgue point [14] that

z∆(t) = lim
j→∞

z(tj)− z(t)
tj − t

= lim
j→∞

∫
[t,tj)T

v(s)∆s

tj − t

= lim
j→∞

∫
[t,tj)

ṽ(s)ds

tj − t
= ṽ(t) = v(t).

Thence, if D = {t ∈ [a, b)T : z∆(t) 6= v(t)} we have D ⊂ A ∩ E, where

A = {t ∈ [a, b)T : σ(t) = t}

and E is the set of points t ∈ [a, b)T such that t is not a Lebesgue point of ṽ. Using Lemma 4
we conclude that

m∗(D) ≤ m∗(A ∩ E) = λ∗(A ∩ E) ≤ λ∗(E) = 0

and thus z∆(t) = v(t) ∆-a.e. t ∈ [a, b)T.

2.5 Set-valued functions properties

Here we gather results of measurable multifunction that will be needed in the sequel.
Let (Ω,F) be a measurable space. A set-valued function E : Ω  Rn is said to be

F-measurable if the set
E−1(V ) = {x ∈ Ω : E(x) ∩ V 6= ∅}

is F-measurable for all compact sets V ⊂ Rn.
A set-valued function E is said to be closed or nonempty when its image E(x) satisfies

the required property, for each point x ∈ Ω.

Lemma 8 (Castaing [15]). Take a measurable space (Ω,F) and a nonempty closed set-valued
function E : Ω Rn. If E is F-measurable, then E has a measurable selection.

Lemma 9 (Castaing [15]). Let E : [a, b]  Rm be a closed set-valued function and Γ :=
{t ∈ [a, b] : E(t) 6= ∅}. Then the following statements are equivalent:

(i) The set-valued function E is L-measurable;

(ii) The set GrE = {(t, v) : v ∈ E(t)} is L × Bm-measurable;

(iii) The set Γ is L-measurable and there is a sequence of L-measurable functions γi : Γ→
Rm such that

E(t) = {γi(t) : i = 1, 2, ...} for each t ∈ Γ.
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We have the following consequence of the previous lemma.

Corollary 1. Let E1, E2 : [a, b]  Rm be closed set-valued functions. If E1 and E2 are
L-measurable, then the set-valued function E : [a, b] Rm given by

E(t) = E1(t) ∩ E2(t)

is L-measurable.

Consider a function φ : T×Rm → Rn. We say that φ is a ∆-Carathéodory function if it
satisfies the followings properties:

(i) for each t ∈ T, the function x 7→ φ(t, x) is continuous.

(ii) for each x ∈ Rm, the function t 7→ φ(t, x) is ∆-measurable.

Let Bm denote the Borel σ-algebra of Rm. We use the notation ∆×Bm for the product
σ-algebra between ∆ and Bm. We recall that the σ-algebra ∆ × Bm is the least σ-algebra
of T× Rm that contains all products A×B, where A ∈ ∆ and B ∈ Bm.

Lemma 10 (Loewen [16]). Let φ : [a, b] × Rm → Rn be a L-Carathéodory function. Then
φ is L × Bm-measurable.

Take a function φ : T× Rm → Rn. We define the function φ̃ : [a, b]× Rm → Rn by

φ̃(t, u) =

{
φ(t, u), t ∈ T
φ(ti, u), t ∈ (ti, σ(ti)) for some i ∈ I.

Lemma 11 (Santos [17]). Let φ : T× Rm → Rn be a ∆-Carathéodory function. Then φ̃ is
a L-Carathéodory function.

Lemma 12 (Santos [17]). Let u : T → Rm be a ∆-measurable function. If B ∈ Bm then
u1(B) ∈ ∆.

Proposition 4. Let F : T × Rm  Rn be a ∆ × Bm-measurable set-valued function and
u : T→ Rm a ∆-measurable function. Then the set-valued function G : T Rn defined by

G(t) = F (t, u(t))

is ∆-measurable.

Proof. Denote by D the collection of subsets

D = {E ⊂ T× Rm : {t ∈ T : (t, u(t)) ∈ E} ∈ ∆}.

Then D is a σ-algebra in T× Rm. If A ∈ ∆ and B ∈ Bm it follows that

{t ∈ T : (t, u(t)) ∈ A×B} = A ∩ u−1(B) ∈ ∆.

Thus ∆× Bm ⊂ D.
Take arbitrarily a compact set V ⊂ Rn. We have

E = {(t, u) ∈ T× Rm : F (t, u) ∩ V 6= ∅} = F−1(V ) ∈ ∆× Bm

and then E ∈ D. Therefore

G−1(V ) = {t ∈ T : F (t, u(t)) ∩ V 6= ∅} = {t ∈ T : (t, u(t)) ∈ E} ∈ ∆

and G is ∆-measurable.
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Proposition 5. Take a ∆-Carathéodory function φ : T × Rn → R and a ∆-measurable
nonempty closed set-valued function H : T  Rn. Suppose that for each t ∈ T there exists
u ∈ H(t) such that φ(t, u) = 0. Thence the set-valued function G : T Rn given by

G(t) = {u ∈ H(t) : φ(t, u) = 0}

has a ∆-measurable selection.

Proof. Since φ is a ∆-Carathéodory function, then φ̃ : [a, b]× Rn → R is a L-Carathéodory
function. Hence φ̃ is a L × Bn-measurable function.

If the set-valued function Φ : [a, b] Rn is defined as Φ(t) = {u ∈ Rn : φ̃(t, u) = 0}, we
have

GrΦ = {(t, γ) ∈ [a, b]× Rn : γ ∈ Φ(t)}
= {(t, γ) ∈ [a, b]× Rn : φ̃(t, γ) = 0}
= φ̃−1({0}) ∈ L × Bn

and it follows from Lemma 9 that Φ is L-measurable, since Φ is closed.
Define N : [a, b]  Rn by N(t) = H̃(t) ∩ Φ(t). As H̃ is a closed and L-measurable

set-valued function we deduce that N is L-measurable. Thence, for any compact subset
V ⊂ Rn we have

G−1(V ) = {t ∈ T : G(t) ∩ V 6= ∅}
= {t ∈ [a, b] : N(t) ∩ V 6= ∅} ∩ T ∈ L

that is, G−1(V ) ∈ ∆ and then G is ∆-measurable.
Since G is a nonempty closed and ∆-measurable set-valued function, from Lemma 8 we

see that G has a ∆-measurable selection.

Consider a set-valued function F : T×Rn  Rn. We say that F satisfies the hypotheses
(H1) and (H2) if

(H1) F is a nonempty, closed and ∆× Bn-measurable set-valued function.

(H2) there exists a function k : T→ [0,∞) in L1([a, b)T) such that for each t ∈ T,

F (t, x) ⊂ F (t, y) + k(t)‖y − x‖B

for all x, y in Rn.

To the set-valued function F we associate the function ρ : T× Rn × Rn → [0,∞) given by

ρ(t, x, v) := inf{|v − y| : y ∈ F (t, x)}.

Lemma 13. Let F : T × Rn  Rn be a set-valued function satisfying the hypotheses (H1)
and (H2). Then

(i) the function t 7→ ρ(t, x, v) is ∆-measurable for each (x, v) in Rn × Rn.

(ii) for any t in T, and any x1, x2, v1, v2 in Rn, one has

|ρ(t, x1, v1)− ρ(t, x2, v2)| ≤ k(t)‖x1 − x2‖+ ‖v1 − v2‖.
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Proof. (i) Take α ∈ R arbitrary. If α < 0 we have

{t ∈ T : ρ(t, x, v) ≤ α} = ∅ ∈ ∆.

On the other hand, if α ≥ 0 then

{t ∈ T : ρ(t, x, v) ≤ α} = {t ∈ T : F (t, x) ∩ {v + αB} 6= ∅} ∈ ∆

since the set-valued function t F (t, x) is ∆-measurable by Proposition 4.
(ii) Fix an arbitrary δ > 0. So there exists η2 ∈ F (t, x2) such that

ρ(t, x2, v2) > |v2 − η2| − δ.

By the hypothesis (H2) there exists η1 ∈ F (t, x1) such that

‖η1 − η2‖ ≤ k(t)‖x1 − x2‖.

As ρ(t, x1, v1) ≤ ‖v1 − η1‖ it follows that

ρ(t, x1, v1)− ρ(t, x2, v2) ≤ ‖v1 − η1‖ − ρ(t, x2, v2)

< ‖v1 − η1‖ − ‖v2 − η2‖+ δ

≤ ‖v1 − v2‖+ ‖v2 − η1‖ − ‖v2 − η2‖+ δ

≤ ‖v1 − v2‖+ ‖η2 − η1‖+ δ

≤ ‖v1 − v2‖+ k(t)‖x1 − x2‖+ δ.

Similarly we obtain

ρ(t, x2, v2)− ρ(t, x1, v1) < ‖v1 − v2‖+ k(t)‖x1 − x2‖+ δ.

Since δ is arbitrary, the proof is complete.

Corollary 2. Let F : T × Rn  Rn be a set-valued function obeying the hypotheses (H1)
and (H2). If x : T→ Rn is an arc, then the set-valued function

t {u ∈ F (t, x(t)) : ‖u− x∆(t)‖ − ρ(t, x(t), x∆(t)) = 0}

has a ∆-measurable selection.

Proof. First, note that the function

t 7→ ρ(t, x(t), x∆(t))

is ∆-measurable. Indeed, if w : T→ Rn×Rn is given by w(t) = (x(t), x∆(t)), so w̃ : [a, b]→
Rn × Rn is L-measurable. Since ρ : T × R2n → R is a ∆-Carathéodory function, it follows
that ρ̃ : [a, b]× R2n → R is a L-Carathéodory function. It follows from Lemma 10 that the
function ρ̃ is L × B2n-measurable. Hence, the function

t 7→ ρ̃(t, w̃(t))

is L-measurable.
If α ∈ R is arbitrarily fixed, we have

{t ∈ T : ρ(t, w(t) < α} = {t ∈ [a, b] : ρ̃(t, w̃(t)) < α} ∩ T

and so the function t 7→ ρ(t, w(t)) is ∆-measurable.
Since the function

φ(t, u) = ‖u− x∆(t)‖ − ρ(t, x(t), x∆(t))

is a ∆-Carathéodory function, we conclude the proof.
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3 Existence and approximation of solutions

Finally, in this section we obtain the main result.
In the next theorem, we suppose that the set-valued function F : T×Rn  Rn obey the

hypotheses (H1) and (H2), and we set

K = exp{
∫

[a,b)T

k(t)∆t}.

If x : T→ Rn is an arc, we define

ρF (x) =

∫
[a,b)T

ρ(t, x(t), x∆(t))∆t.

We also say that the arc x is a trajectory of F if it satisfies the inclusion

x∆(t) ∈ F (t, x(t)) ∆− a.e. t ∈ [a, b)T.

Theorem 7 (existence and approximation). Consider a set-valued function F : T× Rn  
Rn. Then for any arc x and constant ε > 0 satisfying ρF (x) < ε

K , there exists a trajectory
y of F such that y(a) = x(a) and

‖x− y‖∞ ≤
∫

[a,b)T

‖x∆(s)− y∆(s)‖∆s ≤ KρF (x).

Proof. The proof consists of the construction of a sequence of approximate trajectories {xj}
starting from x0 ≡ x by choosing x∆

j+1(t) as the nearest point of F (t, xj(t)) to x∆
j (t). We

show that the sequence {xj} converges uniformly to the trajectory y of the theorem.
Let G0 : T Rn be a set-valued function defined as

G0(t) = {v ∈ F (t, x(t)) : ‖v − x∆(t)‖ − ρ(t, x(t), x∆(t)) = 0}.

Hence G0 has a ∆-measurable selection v0 : T→ Rn.
Since

‖v0(t)‖ ≤ ‖x∆(t)‖+ ρ(t, x(t), x∆(t))

we have v0 ∈ L1([a, b)T,Rn). Thence the function x1 : T→ Rn given by

x1(t) = x0 +

∫
[a,t)T

v0(τ)∆τ

is an arc and satisfies

‖x1(t)− x(t)‖ = ‖
∫

[a,t)T

(v0(s)− x∆(s))∆s‖

≤
∫

[a,t)T

‖v0(s)− x∆(s)‖∆s ≤
∫

[a,b)T

‖v0(s)− x∆(s)‖∆s

=

∫
[a,b)T

ρ(s, x(s), x∆(s))∆s = ρF (x)

for all t ∈ T.
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If the set-valued function G1 : T Rn is defined by

G1(t) = {v ∈ F (t, x1(t)) : ‖v − x∆
1 (t)‖ − ρ(t, x1(t), x∆

1 (t)) = 0}

then G1 has a ∆-measurable selection v1 : T→ Rn. We have

‖v1(t)‖ ≤ ‖x∆
1 (t)‖+ ρ(t, x1(t), x∆

1 (t))

for each t ∈ T. It follows from Lemma 13 that

ρ(t, x1(t), x∆
1 (t)) ≤ ρ(t, x(t), x∆(t)) + k(t)‖x1(t)− x(t)‖+ ‖x∆

1 (t)− x∆(t)‖
≤ ρ(t, x(t), x∆(t)) + k(t)ρF (x) + ‖x∆

1 (t)− x∆(t)‖

and then v1 ∈ L1([a, b)T,Rn).
By defining the arc x2 : T→ Rn as

x2(t) = x0 +

∫
[a,t)T

v1(τ)∆τ

we obtain
x∆

2 (t) = v1(t) ∈ F (t, x1(t)) ∆− a.e. t ∈ [a, b)T.

We also have

‖x∆
2 (t)− x∆

1 (t)‖ = ‖v1(t)− x∆
1 (t)‖ = ρ(t, x1(t), x∆

1 (t))

≤ ρ(t, x(t), x∆
1 (t)) + k(t)‖x1(t)− x(t)‖

≤ k(t)ρF (x) ∆− a.e. t ∈ [a, b)T

since
x∆

1 (t) = v0(t) ∈ F (t, x(t)) ∆− a.e. t ∈ [a, b)T.

Furthermore

‖x2(t)− x1(t)‖ = ‖
∫

[a,t)T

(x∆
2 (s)− x∆

1 (s))∆s‖

≤
∫

[a,t)T

‖x∆
2 (s)− x∆

1 (s)‖∆s ≤ ρF (x)

∫
[a,t)T

k(s)∆s

for each t ∈ T.
Continuing the sequence xj as previously, we get at each step

x∆
j+1(t) ∈ F (t, xj(t)) ∆− a.e. t ∈ [a, b)T.

and
‖x∆

j+1(t)− x∆
j (t)‖ ≤ k(t)‖xj(t)− xj−1(t)‖ ∆− a.e. t ∈ [a, b)T.

By mathematical induction we find that

‖x∆
j+1(t)− x∆

j (t)‖ ≤ ρF (x)k(t)α(t) ∆− a.e. t ∈ [a, b)T (2)

and
‖xj+1(t)− xj(t)‖ ≤ ρF (x)β(t) ∀t ∈ T

92



SANTOS, I. L. D. dos

where

α(t) =

∫
[a,t)T

k(s1)

∫
[a,s1)T

k(s2) · · ·
∫

[a,sj−2)T

k(sj−1)∆sj−1 · · ·∆s2∆s1

and

β(t) =

∫
[a,t)T

k(s1)

∫
[a,s1)T

k(s2) · · ·
∫

[a,sj−1)T

k(sj)∆sj · · ·∆s2∆s1.

From (2) we get

‖x∆
j+1 − x∆

j ‖1 =

∫
[a,b)T

‖x∆
j+1(s)− x∆

j (s)‖∆s

≤
∫

[a,b)T

ρF (x)k(s)α(s)∆s ≤ ρF (x)
[
∫

[a,b)T
k(s)∆s]j

j!

and then {x∆
j } is a Cauchy sequence in L1([a, b)T,Rn). Thence there exists v ∈ L1([a, b)T,Rn)

satisfying

‖x∆
j − v‖1 =

∫
[a,b)T

‖x∆
j (s)− v(s)‖∆s→ 0.

If the arc y : T→ Rn is defined by

y(t) = x0 +

∫
[a,t)T

v(s)∆s

it follows that

‖xj(t)− y(t)‖ = ‖
∫

[a,t)T

(x∆
j (s)− v(s))∆s‖ ≤ ‖x∆

j − v‖1

for all t ∈ T. Thus, {xj} converges uniformly to the arc y.
From Theorem 5 there exists a subsequence {xjm} ⊂ {xj} such that

x∆
jm(t)→ v(t) ∆− a.e. t ∈ [a, b)T.

Consider t ∈ [a, b)T obeying

t ∈ {s ∈ [a, b)T : x∆
j+1(s) ∈ F (s, xj(s)),∀j}

and
x∆
jm(t)→ v(t).

For each m ≥ 1 there exist bm ∈ B and cm ∈ F (t, y(t)) such that

x∆
jm(t) = cm + ‖xjm−1(t)− y(t)‖bm

and so
v(t) = lim

m→∞
x∆
jm(t) = lim

m→∞
cm ∈ F (t, y(t))

since F is closed.
As

y∆(t) = v(t) ∆− a.e. t ∈ [a, b)T
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we may conclude that

y∆(t) ∈ F (t, y(t)) ∆− a.e. t ∈ [a, b)T.

Consider j ≥ 2 arbitrarily fixed. Hence

‖x∆(s)− y∆(s)‖ ≤ ‖x∆(s)− x∆
1 (s)‖+ ‖x∆

j+1(s)− y∆(s)‖

+

j∑
l=1

‖x∆
l (s)− x∆

l+1(s)‖.

For each l ∈ {1, ..., j} we have

‖x∆
l+1 − x∆

l ‖1 ≤ ρF (x)
[
∫

[a,b)T
k(s)∆s]l

l!

and then

‖x∆ − y∆‖1 ≤ ‖x∆ − x∆
1 ‖1 + ‖x∆

j+1 − y∆‖1

+

j∑
l=1

‖x∆
l − x∆

l+1‖1

≤ ‖x∆
j+1 − y∆‖1 + ρF (x)

j∑
l=0

[
∫

[a,b)T
k(τ)∆τ ]l

l!

≤ ‖x∆
j+1 − y∆‖1 + ρF (x) exp{

∫
[a,b)T

k(τ)∆τ}.

Since
lim
j→∞

‖x∆
j+1 − y∆‖1 = lim

j→∞
‖x∆

j+1 − v‖1 = 0

it follows that

‖x− y‖∞ ≤ ‖x∆ − y∆‖1 ≤ ρF (x) exp{
∫

[a,b)T

k(τ)∆τ}.

4 Conclusion

This work contributes to the theory of time scales. More specifically, the Theorem 7
provides the existence and approximation of solutions for dynamic inclusions in time scales.
Thus, we obtain a generalization of the result [[18], 3.1.6 Theorem]. In the spirit of the
present study, [[19], Theorem 1] can be cited as the first result of existence and approximation
of solutions to differential inclusions.
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