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Abstract: A random walker is allowed to walk on a surface along two orthogonal directions;
the possibility to select either of them is a specific function of the number of steps he has

performed. Once he has chosen one of the two axis he is also given a possibility to choose a

forward or a backward step; this possibility may also be a specific function of the number of

steps. In spite of the wide variety of possibilities that may be assigned we herein describe a

theoretical method through which the mean path of a large number of walkers may be found.

Several numerical examples for random walkers verify the theoretical results for their mean

path.

Key words: Random walkers, simulation of continuous functions with discrete steps, Method
of Expectancies, expectation of random variables

Resumo: Permite-se que um caminhante percorra uma trajetória aleatória sobre uma su-

perf́ıcie ao longo de duas direções ortogonais; a possibilidade de selecão entre elas é uma

função espećıfica do número de passos que ele executa. Após escolher um dos dois eixos,

também lhe é permitido dar um passo para frente ou para trás; esta possibilidade também

pode ser uma função espećıfica do número de passos. Apesar da grande variedade de possi-

bilidades que se pode escolher, descrevemos um método teórico pelo qual se pode encontrar o

caminho médio de um número grande de caminhantes. Vários exemplos numéricos verificam

os resultados teóricos para os caminhos médios.

Palavras-chave: caminhadas aleatórias, simulação de funções cont́ınuas com passos discre-
tos, Método da Expectativa, expectativa de variáveis aleatórias
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1 Introduction

The study of Brownian motion was one of the first successful achievements of
random walkers. Afterwards the theme has evolved and grown in several areas of
science such as physics, molecular biology, chemotaxis and mathematics [1-11]. The
origin of the theory of the present paper and its applications (growth of objects such
as tumors, cities, fluid motion in porous media, etc.,) may be found in Refs. [12-18].
For example, in Ref. [14] the method presented in this article has been successfully
applied to the study of the area-perimeter relationship of objects grown with models
of aggregation phenomena.

2 Theory

Let us consider a plane where a random walker roams; his position is defined by
orthogonal axes X, Y along the horizontal and vertical directions, respectively. The
walker has only two classes of steps: He may choose either a step along the X-axis,
with possibility P (n), or select a step along the Y-axis with possibility 1− P (n).

The theoretical basis of this paper is rather simple. Let us concentrate our
attention, for the moment, on his steps along the X-axis. We assume that a walker
makes n+ positive steps of unit length along the X-axis; he may also make n− steps in
the opposite (negative) direction. After a certain number of steps, n = n++n−, the
distance reached by the walker is∆X = n+−n−. If we denote with p(n) = p(n+) and
p(n−) = 1− p(n) the probabilities of positive and negative steps, respectively, then
the ratio

dX

dn
= lim
W→∞

1

W

WX
i=1

n+i − n−i
n+i + n

−
i

= 2p(n)− 1 (1)

tends to the derivative (that may be herein called ‘probabilistic’ derivative) of the
mean distance reached by a large numberW of walkers with respect to the number n
of steps. The path of a random walker is discrete, composed of steps of unit length.
However, as we will see in the following paragraphs, it is convenient to consider the
average path of a large number of walkers as a continuous function.

If we follow the same reasoning for a walker making steps along the Y -axis we
arrive at the following system of differential equations for the mean path of a large
number of random walkers on a plane

dY

dn
= [1− P (n)] [2py(n)− 1] = F (n)

dX

dn
= P (n) [2px(n)− 1] = G(n)

(2)

We have introduced the sub-indexes x and y to denote different possibilities of
positive steps along X and Y-axis, respectively. We have herein assumed indepen-
dence between P (n), px(n) and py(n).
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Equations (2) define a so-called nonautonomous system in which X and Y do
explicitly depend on ‘time’ n, i.e. F (n) andG(n). For some examples of autonomous
systems, i.e. F (X,Y ) and G(X,Y ), see Ref. [12]. The generalization of Eqs. (2) to
a larger number of variables, not herein shown, is immediate, though the solution
may be rather involved.

In the following paragraphs we will study different cases of interest. All walkers
start their journey at the point of coordinates (X0, Y0) for n = 0. A few representa-
tive examples, with different functions for the possibilities P (n), px(n) and py(n) are
selected in order to see the pattern of the walk and to test the theory for the equation
of the mean path. A measure of the linear dimensions of the example is a square
frame of sides equal to L units of length.

2.1 Example 1

We will start our study with a trivial random walker. Figure 1 shows W =
1500 walkers, all of them starting their paths at the lower left corner of the frame,
and ending it when they have performed ns = 7000 steps, selecting the X-axis with
a constant possibility P (n) = 0.55. They also have constant possibilities px(n) =
0.6 and py(n) = 0.6 to go forward once they have selected the respective axis. It is
obvious to say that the possibilities to choose the Y-axis and a backward step are
1−P (n) = 0.45 and 1− px(n) = 1−py(n) = 0.4, respectively. The 1500 paths show
the classical dispersion of random walkers, proportional to

√
n when n increases.

By means of Eqs. (2) we may find the equation of the mean path

Y − Y0 =

nZ
0

[1− P (n)] [2py(n)− 1] dn = 0.09n

(3)

X −X0 =

nZ
0

P (n) [2px(n)− 1] dn = 0.11n

This simple system of parametric equations allows the expression

Y = Y0 +
0.09

0.11
(X −X0) (4)

for the mean path. It is painted in white in the figure above; the origin is denoted
with a small circle near the lower left corner of the frame.
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Figure 1. The simplest case, given by Example 1, with constant probabilities to choose a

step in each direction. The trajectories of random walkers are painted in black and the mean

path, given by Eq. (4), in white.

2.2 Example 2

This case also hasW = 1500 random walkers, each one with a maximum number
of steps of ns = 7000, as in Example 1. Figure 2 shows the results enclosed in a
square frame of L = 1650. The numerical model (experimental results) represented
with black paths show a wavy pattern due to the following initial conditions of
possibilities

P (n) = n/ns

px(n) = 0.7 (5)

py(n) = 0.6− 0.4 sin(2πn/2000)

The first of these three equations above says that at the start of each walk, when
P (n) is near zero, most of the steps are likely to be along the Y-axis; for the final
steps, when P (n) is near 1, most of the steps may be expected to be along the X-
axis. The second equation tells the walker that he has more possibilities to make a
forward step along the X-axis and a few in a backward direction. The third equation
gives an oscillatory nature to the possibility of a positive or a negative step along
the Y-axis.
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In order to know the theoretical equation of the mean path we replace Eqs. (5)
into Eqs. (2)

Y − Y0 =

nZ
0

[1− P (n)] [2py(n)− 1] dn = −254.648 + 0.0000571429(3500− n/4)n

−0.0363783(n− 7000) cos(πn/1000) + 11.5796 sin(πn/1000) (6)

X −X0 =

nZ
0

P (n) [2px(n)− 1] dn = 0.0000285714n2

These parametric equations are represented with a white trace. It may be clearly
seen that the mean path represents reasonably well the paths of 1500 random walk-
ers.

Figure 2. The trajectories of W = 1500 random walkers each one making a total of ns =

7000 steps are shown in black. The probabilities for each direction are given by Eqs. (5)

and the mean path, painted in white, is given by Eqs. (6).

2.3 Example 3

This is a case W = 1000 of random walkers, each one performing ns = 20000
steps on a region limited by L = 2800. The possibilities for the election of a positive
or a negative step along both axis are trigonometric functions out of phase. The
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possibilities are

P (n) = 0.55

px(n) = 0.4 [1 + sin (2π(n/1250− 0.25))] (7)

py(n) = 0.4 [1 + sin (2πn/5000)]

Figure 3 shows the 1000 meandering paths painted in black, while the mean
path, painted in white, is given by the following equations

Y − Y0 =

nZ
0

[1− P (n)] [2py(n)− 1] dn = 0.45 [−0.2n+ 636.6198 (1− cos(πn/2500))]

(8)

X −X0 =

nZ
0

P (n) [2px(n)− 1] dn = 0.55 [−0.2n− 159.15494 cos (2π(n/1250− 0.25))]

The origin of walks is in the upper right corner of the square.

Figure 3. This figure illustrates Example 3 showing the 1000 meandering paths painted in

black, while the mean path, painted in white, is given by Eqs. (8). The starting point for

all walkers is in the upper right corner of the region.
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2.4 Example 4

Figure 4 shows long paths (ns = 35000 ) of W = 1000 random walkers that
converge with spirals towards the interior of a square of L = 4200 units. The
possibilities of their random motion are similar to the previous example except for
exponential terms

P (n) = 0.5

px(n) = 0.5
h
1 + sin (2π(n/25000− 0.25)) exp

³
−3.4× 10−5n

´i
(9)

py(n) = 0.5
h
1 + sin (2πn/25000) exp

³
−3.4× 10−5n

´i
The integration of Eqs. (2) with Eqs. (9), the mean path is,

Y − Y0 =

nZ
0

[1− P (n)] [2py(n)− 1] dn = 0.5 {53907.36− 3907.36 exp (−0.000034n)

× [cos (πn/12500) + 0.135282 sin (πn/12500)]} (10)

X −X0 =

nZ
0

P (n) [2px(n)− 1] dn = 0.5 {−5280595 + 528.595 exp (−0.000034n)

× [cos (πn/12500)− 7.391983 sin (πn/12500)]}

Figure 4. Random walkers with a large amount of steps, ns = 35000, and probabilities given

by Eqs. (9). Their mean path, shown in white, is an inward spiral given by Eqs. (10). Two

dotted lines at a distance of 3
√
n normal to the mean path embrace most of the trajectories.
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The converging spirals of this example (starting at the lower part of the frame)
can be transformed into diverging ones by changing the sign of the argument of the
exponential from negative to positive.

2.5 Example 5

In figure 5 there are W = 500 walkers (with black paths), each one with ns =
85000 steps, in this example. They are instructed with the following possibilities

P (n) = 0.3

px(n) = 0.6 + 0.4
h
sin (2π(n/25000− 0.25)) exp

³
−3.4× 10−5n

´i
(11)

py(n) = 0.5 + 0.22
h
sin (2πn/25000) exp

³
10−5n

´i
The main difference between this and the previous example is that the amplitudes

of px(n) decrease, and those of py(n) increase, with n. The result is that they walk
from left to right with increasing amplitudes.

Figure 5. Despite the complicated probabilities given by Eqs. (11), the mean path, in white,

follows extremely well the trajectories of these random walkers. A white circle on the left

shows the starting point of all walks.
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The region is limited by the frame of L = 7100. The mean path is given by the
equations

Y − Y0 =

nZ
0

[1− P (n)][2py(n)− 1]dn = 0.7
n
1747.937− 1747.937 exp

³
10−5n

´
× [cos (πn/12500)− 0.0398873 sin (πn/12500)]}

X −X0 =

nZ
0

P (n)[2px(n)− 1]dn = 0.3{−422.875 + 0.2 exp
³
−3.4× 10−5n

´
(12)

×[n exp
³
3.4× 10−5n

´
+ 2114.38 cos (πn/12500)

− 15629.457 sin (πn/12500)]}

2.6 Example 6

Figure 6 shows a case in a field of L = 1700 in which W = 1500 walkers make
ns = 12000 steps. We want that almost all steps should be along the Y-axis at
the beginning of the walk; thus we set a small P (n) for small n. However, we also
want that all steps should be along the X-axis when the path is about to end; this
is accomplished with a high P (n) when n approaches ns. The possibilities are given
by

P (n) = 0.2 + 0.8n/ns

px(n) = 0.5 + 0.5 sin (2πn/3000) (13)

py(n) = 0.6 + 0.4 sin (2πn/3000)

Figure 6. This figure shows the results for Example 6. The black paths show the behavior

of 1500 random walkers and the white curve shows their mean path.
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The 1500 random walkers make the paths shown in black; the mean path (in
white) is found with the integration of Eqs. (2) with Eqs. (13)

Y − Y0 =

nZ
0

[1− P (n)] [2py(n)− 1] dn = 305.577 + 0.00002667 (6000− 0.25n) +

0.0254648 (−12000 + n) cos (πn/1500)− 12.1564 sin (πn/1500) (14)

X −X0 =

nZ
0

P (n) [2px(n)− 1] dn = 95.49297− 0.031831 (3000 + n) cos (πn/1500) +

15.198177 sin (πn/1500)

2.7 Example 7

A peculiar path resembling a number 8. Figure 7 shows W = 1000 random
walkers each one with ns = 25000 steps contained in a square of L = 5100. They
must obey the possibilities

P (n) = 0.5

px(n) = 0.5 + 0.5 sin [2π (n/12500− 0.25)] (15)

py(n) = 0.5 + 0.5 sin (2πn/25000)

Their mean path (in white) is obtained with the above possibilities and the
integration of Eqs. (2)

Y − Y0 =

nZ
0

[1− P (n)] [2py(n)− 1] dn = 0.5 [3978.87− 3978.87 cos(πn/12500)]

(16)

X −X0 =

nZ
0

P (n) [2px(n)− 1] dn = 0.5 [−1989.4368 cos (2π(n/12500− 0.25))]

The paths start at the lower part of the figure (white circle); the walkers are
due West at the beginning of their journey. The number of steps has been selected
in order to end the path near the origin (X0, Y0); they come from the East. Had
the number of steps been considerably increased the number 8 would disappear on
account of the dispersion on the random walks. However, the number 8 for the mean
path will remain unaltered.
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Figure 7. The trajectories of random walkers following directions given by Eqs. (15) are

painted in black. The mean path, in white, is a periodic curve, a figure-eight given by Eqs.

(16). The dotted lines at a distance of 3
√
2 normal to the mean path embrace the wake

left by the walkers.

3 Dispersion of walks

When each of the walkers completes its ns steps they reach a point (Xns,i, Yns,i),
for 1 ≤ i ≤W ; the final point of the mean path is (Xns, Yns). The quantity

ε =
1

W

WX
i=1

q
(Xns,i −Xns)2 + (Yns,i − Yns)2 (17)

is a measure of how dispersed the walkers are when they end their traveling. It
seems evident that ε → 0 when W → ∞. We have used reasonable values of W in
order to have relatively small errors ε. Thus, for Examples 1 through 7 the errors
are ε ≈ 1, 2, 2, 5, 2, 4 and 7, respectively.

According to the Central Limit Theorem and the assumptions already made, a
normal distribution of probabilities around the mean path is expected. Thus, a line
with a slope −1/ (dY/dX), normal to the mean path at step n, will determine two
points at both sides of the mean path at a distance m

√
n which will embrace the

mean trajectory with a region containing a certain number of all possible cases. The
Examples 4 (the spiral) and 7 (the number 8) have dotted lines embracing 99.7% of
the experiments with a distance 3

√
n at both sides and normal to the mean path.
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4 Conclusions

A walker may choose at random the X- or Y-axis when walking on a plane; he
may also choose at random a positive or a negative direction along either of these
axes. If we assume that the possibilities of these elections are given functions of the
step the walker is performing, it is shown that the mean path of many walkers may
be predicted theoretically.
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