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Abstract: We show that the microwave background radiation, observed in Cosmos, appar-
ently, is the zero-level (background) radiation of all atoms in the Universe. This radiation

naturally originates from the dynamic model of microparticles, where the hydrogen atom is

regarded as a paired proton-electron system with the binary wave spherical-cylindrical field.

Optical spectrum of the exited H-atom and background radiation-absorption spectrum of the

H-atom, being in equilibrium with the wave field-space of the Universe, are derived here on

the basis of such a model.
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1 Introduction

The background radiation of H-atoms was not considered before [1, 2]. This
omission happened because of the domination of quantum mechanical concepts on
the structure of atoms, fully formed among scientists and unquestioned hitherto.
These concepts originate from the Bohr Theory and kept its essential features. In
accord to one of them, an atom does not emit energy being in equilibrium. But we
have reasons to doubt whether this is true.

According to the dynamic model of microobjects of atomic and subatomic levels
[3-5, 6], the hydrogen atom, as a paired proton-electron system, represents by itself
the stable wave system of the longitudinal-transversal structure. The wave exchange
(interaction) takes place continuously between the longitudinal (spherical) wave field
of the proton and transversal (cylindrical) wave field of the orbiting electron. The
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notion exchange instead of interaction reflects wave behavior of “elementary” par-
ticles in their dynamic equilibrium with the ambient field, at rest and motion, and
interactions with other objects. The wave exchange occurs at the fundamental fre-
quency of the atomic and subatomic levels, lying within the exafrequency band:
ωe = e/me = 1.869161986× 1018 s−1 [6].

Thus, following the dynamic model, the H-atom is a paired dynamic system with
the central spherical microobject of a complicated structure (proton) and the orbiting
electron. Both proton and electron are in a dynamic equilibrium between themselves
and environment through the wave process of the frequency ωe. The spherical wave
field of the proton is closed on to the cylindrical wave field of the orbiting electron and
partly on to the ambient field-space. In other words, longitudinal oscillations of the
proton’s wave shell in the radial direction provide its interaction with the electron
and environment. The detail description of the dynamic model of “elementary”
particles is in the work [6].

As long as the dynamic equilibrium exchange exists, inside the H-atom (proton-
electron system) and between the H-atom as a whole and the ambient field of matter-
space-time, the system is stable and neutral. Under ionization, the dynamic equi-
librium inside and between the H-atom and the ambient field-space is broken. In
this case, H-atom, as H+-ion (proton), is regarded as a charged particle with the
charge equal, in value, to the electron charge, but with the opposite sign. Thus,
the value of the charge gives the correct amplitude measure of violation of dynamic
equilibrium. The uncompensated exchange of the field of proton with electron, at
the fundamental frequency ωe, exhibits itself in ionized H-atom (H+-ion) as exafre-
quency exchange of the proton directly with the ambient field-space. That allows
ascribing the positive charge to the H+-ion, equal in value to the electron charge.

The stable states of the H-atom form, in the exafrequency wave field, the spec-
trum of dynamically stationary states (defined by characteristic values of arguments
of Bessel functions [7]) and generate the background spectrum of zero level radiation
responding, as it turned out, to the black-body radiation of approximately 2.73 K
temperature.

It is no wonder that the H-atom has background radiation. Similarly as any
electron system at the macrolevel, the H-atom (and, hence, any atom), as an ele-
mentary electron system at its (micro-) level, must be characterized by background
radiative noise caused by orbital current noise of orbiting electrons. The H-atom
background had to have extremely small intensity and its observation can be possi-
ble and effective only on the immense scale of H-atoms abundance, i.e., in Cosmos.
Fortunately, the current research of microwave background, carrying out intensively
in Cosmos [1], can verify the validity of the dynamic model proposed and, in this
connection, once more the Big Bang hypothesis of the origin of the Universe − the
urgent point of natural science.

We will show below, as simple and clear as possible, the derivation of the both
aforementioned spectra. For this aim, we will lay stress mainly on the wave motion
of the electron along the orbit taking into account that one half-wave of the funda-
mental tone of the electron is placed on the Bohr first orbit (it follows from the strict
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solution of the wave equation, which is described by the Bessel wave function of the
order 1/2 [5]). But at first let us present essential energy relations originated from
the dynamical model of the H-atom, which are necessary for further consideration.

2 Energy relations

The hydrogen atom is a classical example of the binary spherical-cylindrical
field. The spherical subfield of possible amplitudes of velocities of microobjects is
defined by the formula

v =
vs
kr

(2.1)

where vs is the amplitude of velocity of the spherical field, corresponding to the
condition kr = 1; k = 2π/λ is the wave number corresponding to the fundamental
frequency ωe of the field of exchange, the constant quantity [6]. The expression (2.1)
is the effect of constancy of the energy flow in the elementary spherical field, which is
described by the cylindrical functions of the order 1/2. However, it is approximately
valid also for spherical fields, which are described by the spherical functions of higher
orders, under the condition kr À 1.

If r0 is the radius of the first stationary shell and v0 is the velocity on it, then,
at the constant k, we have the following relations for the radii and velocities of
stationary shells

r = r0n, v = v0/n (2.2)

In the elementary spherical field, n is an integer. This is the homogeneous
spherical field. The distance between shells, in such a field, is constant and equal to
r0.

In the homogeneous cylindrical subfield of the H-atom, the velocity is defined by
the formula

v = vc/
√
kr (2.3)

where vc is the amplitude of velocity of the cylindrical field. Because k is the con-
stant, we obtain the following relations for the stationary shells

r = r0n, v = v0/
√
n (2.4)

The formulae (2.3) and (2.4) are approximately valid for the heterogeneous cylin-
drical fields under the condition krÀ 1.

According to the theory of circular motion [5], the energetic measures of rest and
motion are represented by the opposite, in sign, kinetic and potential energies equal
in value. Because any insignificant part of an arbitrary trajectory is equivalent to a
small part of a circumference, any wave motion of an arbitrary microparticle (and,
in an equal degree, a macro and megaobject) is characterized by the kinetic and
potential energies also equal in value and opposite in sign

Ek = mv
2
k/2, Ep = m(iv)

2
p/2 = −mv2p/2 (2.5)
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Hence, the total potential-kinetic energy of any object in the Universe is equal to
zero

E = Ek +Ep = 0

and its amplitude is equal to the difference of kinetic and potential energies

Em = Ek −Ep = mv2 (2.6)

Thus, because the circular motion is the sum of two mutually perpendicular
potential-kinetic waves, the amplitude energy of an orbiting electron is

E = mv2m = mω2A2m =
mω2A2

kr
=
mω2A2

ω

v
r

=
mA2v

r
ω = h̄eω (2.7)

where A is the amplitude of the traveling wave. Let us rewrite (2.7) as

E = h̄eω = heν = he
v

λe
(2.8)

where λe is the electron wave of H-atom space

h̄e =
mA2v

r
and he =

2πmA2v

r
(2.9)

are the radial and azimuth electron actions, respectively.

In the space of the stationary field of standing waves, we have the similar relations

h̄e =
ma2v

r
and he =

2πma2v

r
(2.10)

where a = 2A is the amplitude of the standing wave.

On the other hand, the electron is in the spherical field of H-atom, where its
action mvr = h̄ is the constant value. Hence, at r = r0, we have a = r0, v = v0 and

h̄e = mv0r0 (2.11)

Under the perturbations, the wave atomic space of the wave frequency ω =
2πv0/λe, induces outside the atomic space the external waves of the same frequency,
but with the speed c and wavelength λ, so that

ω =
2πv0
λe

=
2πc

λ
(2.12)

Therefore, the electron energy can be presented also as

E = h̄eω = heν = he
c

λ
=
1

2
hλ
c

λ
(2.13)
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where he = 2πmv0r0 is the action of the electron (an elementary wave action),
hλ = 4πmv0r0 is the wave action of the wave of the fundamental tone. With that,
the electron’s wave energy is equal its kinetic energy on the orbit

E = h̄eω = mv0r0ω = mvrω =
1

2
mvrωorb =

1

2
mv2 (2.13a)

where ω = ωorb/2 is the circular wave frequency of the fundamental tone and ωorb
is the circular frequency of electron’s revolution along the orbit, for which v =
rωorb; the relation v0r0 = vr is the effect of the constancy of the energy flow in the
elementary spherical field or the constancy of the elementary wave action mvr = h̄.

Thus, the energy of the overtones (see (2.3) and (2.7)) is

ε = mv2 = mv0ωa0n = h̄ωn = hνn (2.14)

In such a case, for the Bohr orbit, the following ratio (for the total energy) is valid

v2

v2σ
=
hνn

εσ
=
hνn

kT
(2.15)

where vσ is the most probable speed, εσ is the most probable quantum of energy,
h = 2πmv0r0 is the Planck azimuth wave action, and T = εσ/k is the most probable
relative energy (the “absolute” temperature). Probabilities of energy states w are
described by the approximate Gauss’ formula

w = C exp(−v2/v2σ) = C exp(−hνn/εσ) = C exp(−hνn/kT ) (2.16)

Hence, according to the equation (2.15), the mean value of energy of excitation (of
a shell of H-atom) is

hενi =
P
hνn∆wnP
∆wn

= hν

∞P
n=0

n exp(−nhν/kT )
∞P
n=0

exp(−nhν/kT )
=

hν

exp(hν/kT )− 1 (2.17)

3 H-atom optical spectrum; Rydberg constant

Let us assume that the electron orbit is in the plane z = 0. Because the electron
is the node of the wave orbit, hence, the boundary orbital conditions at the instant
t = 0 must express the equality to zero of potential azimuth displacements in the
node during one revolution [5]

Re exp (−i(ϕ/2 + ϕ0)) |ϕ=0 = Re exp (−i(ϕ/2 + ϕ0)) |ϕ=2π = 0 (3.1)

These conditions are realized for the traveling electron wave in the positive di-
rection if, e.g., ϕ0 = π/2. In such a case, Ψ-function of the electron takes the
form

Ψ+1/2 = iA
ei(ω t−kr)√

kr
e−i(ϕ/2+π/2)e−ikzz (3.2)
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The function (3.2) describes the wave of the fundamental tone of the electron λe.
Its length is equal to the doubled length of the electron orbit of the Bohr radius r0
[5]

λe = 4πr0 (3.3)

The wave motion of the fundamental tone occurs in the nearest layers of the wave
atmosphere of the H-atom, almost at its surface. The equilibrium wave interchange of
energy takes place between the H-atom and the surrounding field of matter-space-
time [6]. However, under the perturbations, the electron wave (3.3) can reiterate
itself in the cosmic wave of the same frequency (see (2.12))

λ =
4πr0
v0

c (3.4)

The inverse quantity of this wave is the Rydberg constant

R =
1

λ
=

v0
4πr0c

=
1

T0c
(3.5)

The electron realizes the transitions of the H-atom from the n-th into m-th
energetic state; it is the wave motion with the energy of transition (2.13). The law
of conservation of energy, at such an extremely fast “quantum” transition, can be
presented by the equality

Em + h
c

λ
= En (3.6)

Taking into account the equations (2.4), and (2.5), the potential energy of the elec-

tron in the spherical field of the H-atom is E = −mv
2
o

2n2
. As a result, we arrive at the

following equation of the energetic balance

h
c

λ
= En −Em = mv20

2

µ
1

m2
− 1

n2

¶
(3.7)

Hence, we obtain
1

λ
=
mv20
2hc

µ
1

m2
− 1

n2

¶
(3.8)

Thus, in the strict correspondence with the wave theory, we arrive at the spectral
formula of H-atom (see also [8]) and the Rydberg constant

R =
mv20
2hc

=
v0

4πr0c
(3.9)

Note finally that in accordance with the strict solutions in the framework of
the approach developed elementary optical classes of spectra in a general case are
defined by the following formula of energetic transitions [5]

1

λ
= R

Ã
e2p(zp,m)z

2
p,1

z2p,m
− e

2
q(zq,n)z

2
q,1

z2q,n

!
(3.10)



G. P. Shpenkov and L. G. Kreidik 15

where

ep(zr,s) =

r
πzr,s
2

(J2r (zr,s) + Y
2
r (zr,s)) (3.11)

Jr(zr,s) and Yr(zr,s) are Bessel functions; zr,s, zp,m, zq,n are zeros of Bessel functions;
the subscripts p, q, r indicate the order of Bessel functions and m, n, s, the number
of the root. The last defines the number of the radial shell. Zeros of Bessel functions
define the radial shells with zero values of radial displacements (oscillations), i.e.,
shells of stationary states.

4 Background radiation spectrum

The electron in H-atom under the wave motion exchanges the energy with the
proton constantly at the fundamental frequency ωe. This exchange process between
the electron and proton has the dynamically equilibrium character. It is represented
by a system of radial standing waves, which define “zero level exchange” [5] in a
dynamically stable state of the atom. The frequency of zero wave perturbation is

ν0 = R

µ
1

n2
− 1

(n+ δn)2

¶
(4.1)

where δn = δrn/r1 is the relative measure of casual perturbations δrn of the orbital
radius r1 at the level of zero exchange, R is the Rydberg constant. In the spherical
wave field of the H-atom, we have

δrn =
Aep(zp,s)

zp,s
=
A

zp,s

r
πzp,s
2

³
J2p (zp,s) + Y

2
p (zp,s)

´
(4.2)

where A = r0
q
2hR/mpc is the constant equal to the oscillation amplitude at the

sphere of the wave radius r = 1/k = λ/2π; zp,s are roots of Bessel functions Jp and
Yp; mp is the proton mass; r0 is the Bohr radius; h is the Planck constant. Thus, we
obtain the following spectrum of waves, generated by the perturbations of stationary
states of the H-atom

1

λ
=
R

n2
− RÃ

n+
A

r1zp,s

r
πzp,s
2

³
J2p (zp,s) + Y

2
p (zp,s)

´!2 (4.3)

Let us estimate one of the most probable perturbations of the stationary state

(n = 1), assuming that R =
R∞

1 +me/mp
= 109677.5831 cm−1 and

A = r0
q
2hR∞/mpc = 9.01812058× 10−13 cm.

At p = 0, the zero of the second kinetic shell [5] is z0,2 = y0,2 = 3.95767842 [9],
hence

λ = 0.106267 cm (4.4)
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This wave must be within an extremum of the spectral density of equilibrium
radiation. This allows estimating the absolute temperature of zero level of radiation

T =
0.290 cm ·K

λ
= 2.7289K ≈ ∆K (4.5)

where ∆ = 2π lg e = 2.7288 is the measure of the fundamental period (fundamental
quantum of measures) [3, 10, 11]. The temperature obtained coincides with the tem-
perature of “relict” background measured by NASA’s Cosmic Background Explorer
(COBE) satellite to four significant digits (2.725± 0.002K).

Thus, the formula (4.1) defines the waves of radiation-absorption of extremely
small intensity and relatively large length, which are characteristic for components
of waves of zero exchange. The zero level of exchange is not perceived visually
and integrally characterized by the absolute temperature of zero exchange. It is
perceived only as a standard energetic medium. Its spectrum is well characterized
by a black-body (Planckian) spectrum [1]. We will show it now.

5 The Planckian character of background radiation

Let us consider the balance radiation in a volume of an arbitrary cavity, which
serves as a model of a “black body”. We will do it also from the unknown earlier
point of view. In this case, to compute the number of standing waves in the cavity,
it is quite sufficient to compute a number of fundamental oscillations, taking into
account that one H-emitter corresponds to every elementary standing wave. It is
the extremely simplest way of the Planck’s law derivation.

During the one wave period of the fundamental tone, the electron on the Bohr
orbit twice runs the azimuth orbit (see (3.3)), hence, the linear density of elementary
half-waves nlin, placed on Bohr orbits is

nlin =
2

λ
(5.1)

The volumetric density can be determined from the equality

nvol = nxnynz = n
3
lin =

8

λ3
=
8ν3

c3
(5.2)

and the spectral density by the ratio

nν =
dnvol
dν

=
24ν2

c3
(5.3)

Because every standing wave is related to one H-emitter of the mean energy hενi
(2.17), the spectral density of radiation will be equal to

uν = nν hενi = 3

π

8πν2

c3
hν

ehν/kT − 1 (5.4)



G. P. Shpenkov and L. G. Kreidik 17

A part of the density of spectral flux of energy, uνc, through an elementary area
of ∆S = πr2, along all directions, defines the energetic spectral luminosity of atomic
space

rν = uνc
∆S

4πr2
=
1

4
uνc (5.5)

Hence, we arrive at

rν =
3

π

2πν2

c2
hν

ehν/kT − 1 (5.6)

and the integral luminosity (the Stefan-Boltzmann law) takes the following form

Re = σeT
4, where σe =

3

π
σ =

2π4k4

5c2h3
(5.7)

If we introduce the mean spectral-temperature coefficient of radiation ζ (in the
capacity of qualitatively similar states of atoms) and the multiplier

εζ = (3/π)ζ (5.8)

then
Re = εζσT

4 (5.9)

Planck’s law is an approximate guideline; therefore, the factor 3/π in the for-
mula (5.7) has no principal meaning. In practice, the deviation from Planck’s law is
connected with the empirical spectral and integral coefficients of radiation. Accord-
ingly, an application of the law to real systems, for example the stars, is possible
only with essential assumptions.

6 Conclusion

1. For the first time the spectrum of microwave background radiation of hydrogen
atoms (4.3) was derived theoretically. The background radiation is exactly that
of a “black body” with approximately 2.73 K temperature. The aforementioned
spectrum, as well as the optical spectrum of H-atom, was obtained taking into
account the orbital (circular) motion of the electron-wave, where the electron-particle
is regarded as the node of the wave orbit.

2. We believe that together with the observed data on the cosmic microwave
background [1], the data obtained provide strong evidence for the existence of zero
level radiation of hydrogen (and, hence, any) atoms in the Universe.

3. The results presented, along with other data of the authors obtained in the
framework of new approach [3-5], once more confirm the validity of the dynamic
model of microobjects of atomic and subatomic levels [6, 12], where the H-atom
represents by itself a paired dynamic system of quasispherical structure with the
orbiting electron-satellite. The spherical component (ionized H-atom, proton) re-
lates to the spherical wave field of exchange (interaction). The electron-satellite (its
motion) relates to the cylindrical wave field of exchange. The spherical field is a
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field of contents (the basis of H-atom) and the cylindrical field is a field of the form
(the superstructure of H-atom).

4. The concept on the zero level radiation of H-atoms questions the Big Bang
hypothesis of the origin of the Universe and quantum mechanical probabilistic model,
which excludes an electron’s orbital motion along a trajectory as a matter of prin-
ciple. Therefore, it must attract a special attention of physicists and should be
affected to the detail analysis.
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