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Abstract: The classical random walker found in the literature has steps along four orthog-

onal directions, i.e., North, South, East and West, each one with the same possibility to

be chosen. We propose a new type of random walker with changing possibilities. They are

encouraged to make a new step in the same direction of the previous step.
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Resumo: As caminhadas aleatórias clássicas descritas na literatura assumem passos em

quatro direções ortogonais, i.e., norte, sul, leste e oeste, todas com a mesma probabilidade.

Propomos um novo tipo de caminhada aleatória com probabilidades variáveis. Cada novo

passo é encorajado a ser dado na mesma direção que a do prévio.

Palavras-chave: caminhadas aleatórias, caminhantes aleatórios inerciais, quimiotaxia, movi-
mento browniano

1 Introduction

Since “The Problem of the RandomWalk” stated by Karl Pearson was published
in 1905 [1], random walkers have been applied to the study of several phenomena
related to physics, mathematics, chemistry, statistics, biology and other disciplines.
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Though Brownian motion is the classical problem simulated with random walkers,
many modifications of the original simple concept have spread in all areas of scientific
research. There have been fruitful results gathered with the mathematical tool of
random walkers and big challenges are still waiting to be faced [2-10].

We have studied random walkers that could walk either on a line or on a surface,
making steps along two, four or eight directions, with and without the condition of
self-avoidance. We have also studied random walkers walking along the branches of
a dichotomous tree. The majority of these random walkers were used to study ag-
gregation phenomena. Some of them were even used to simulate algebraic functions
[11-16].

Each step the walker performed had no influence whatsoever over the following
step. In other words, each step was an independent event. We will herein call them
non-inertial walkers. We now propose the study of random walkers who decide to
make a step according with the decisions they made in the previous step. We call
them inertial walkers. A preliminary study of inertial walkers moving along a line
may be found in [17].

The available literature shows models that take into account some kind of ‘mem-
ory’ in the behavior of random walkers. A pioneer paper by G. I. Taylor [18] about
turbulent diffusion studies a model in which a coin toss decides not the direction
of the walker’s next step but the persistence of motion. There are also theoretical
works related to the definition of walkers with persistence, external bias and other
forms of memory [19-24]. Most of these works were inspired by the study of the
motion of microorganisms toward a source of food, light or heat and the response of
organisms to chemical stimuli, i.e., chemotaxis [25-29].

The inertial walkers herein presented are intended in part to mimic enzymatic
and genetic checks and mechanisms of balance that are of utmost importance for
the growth and survival of many kinds of cells [29].

All random walkers herein studied do not interfere with each other, i.e., they are
independent. Walkers walk along virgin terrain when they start a path. They may
make steps in four directions only: North, South, East and West; the possibility to
select directions North-South or East-West is 1/2. The length of each step is unity
and the maximum number of steps is n = NS for all of them.

2 Inertial walkers

The origin of the walk for each walker is a point

P0(x0, y0) (1)

The initial possibilities in order to select directions East or West, North or South
are

K0,x and K0,y (2)

i.e., positive or negative directions along X- and Y -axes, respectively.
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Let us assume the walker made n steps and has already decided the direction
North-South or East-West, with probability 1/2. In order to decide if the step is
positive or negative, we define two variable possibilities

Kn,x and Kn,y (3)

for the X- and for the Y -axes, respectively. A pseudo-random number r is then
selected and the rules for step n+ 1 are

if 0 ≤ r ≤ Kn,x then Xn+1 = Xn + 1 and Kn+1,x = Kn,x + εx
if Kn,x < r ≤ 1 then Xn+1 = Xn − 1 and Kn+1,x = Kn,x − εx

(4)

or
if 0 ≤ r ≤ Kn,y then Yn+1 = Yn + 1 and Kn+1,y = Kn,y + εy
if Kn,y < r ≤ 1 then Yn+1 = Yn − 1 and Kn+1,y = Kn,y − εy

(5)

The quantities εx and εy are small and positive numbers set as initial conditions
(for εx < 0 and εy < 0 for linear inertial walkers see [17]). Notice that with the rules
given in equations (4) or (5), the possibilities Kn+1,x and Kn+1,y change along the
sojourn of each inertial random walker.

Let us assume that a random walker makes a step along the X-axis and to the
East, i.e., a positive step. Our way to give him the property of a so-called inertia is
to ‘encourage’ him to make another step to the East. Notice that we do not force
him to repeat the same kind of step; we simply tell him that he might make another
positive step. It will be a matter of chance whether he accepts or not the suggestion.
If the step is negative and along the Y-axis, for example, we encourage him to repeat
the same kind of step, i.e., we say that, if he feels to do so, he might also make the
following step to the South. Due to this peculiar behavior the new type of random
walkers we are dealing with could also be called ‘memorious’ walkers.

It is evident that in the process of increasing or decreasing possibilities in equa-
tions (4) and (5), minimum Kmin,x, Kmin,y and maximum Kmax,x, Kmax,y, possibil-
ities may eventually be reached. We herein propose that these limits should not be
exceeded; thus we set the conditions

if Kn,x < Kmin,x or Kn,x > Kmax,x then Kn+1,x = K0,x (6)

and
if Kn,y <Kmin,y or Kn,y > Kmax,y then Kn+1,y = K0,y (7)

The possibilities Kmin,x, Kmax,x, Kmin,y and Kmax,y are also initial conditions for
all walkers.

Non-inertial walkers may be considered a particular case in which two constant
possibilities, K0,x and K0,y, are defined and followed throughout their paths.

3 Periods

As we had seen in previous studies of inertial linear walkers [17], we may expect
something to occur when walkers meet conditions given in equations (6) and (7),
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because they denote a step in which walkers change their behavior drastically. These
events are herein called ‘periods’; they may also be viewed as ‘wavelengths.’ They
are met when steps, of length equal to unity, coincide with coordinates given by

Tx =
K0,x −Kmin,x

εx
=
Kmax,x −K0,x

εx
(8)

and

Ty =
K0,y −Kmin,y

εy
=
Kmax,y −K0,y

εy
(9)

or their multiples. The periods are the number of positive steps necessary to increase
the possibilities from K0 to Kmax for X and Y directions; the period is also the
number of negative steps necessary to decrease the possibility from K0 to Kmin also
for X and Y.

We may assume that the inertial random walkers we are dealing with are balls
of billiard, elementary particles, electromagnetic fields, bacteria, etc. Equations (4)
and (5) could represent a ‘tunneling effect’. Equations (6) and (7) are intended to
represent a slap in the face or a head-on collision against an obstacle that returns the
enthusiastic walker to its initial possibilities. If we think about Brownian motion,
εx and εy could be interpreted as a measure of gas temperature or density.

Periods Tx = Ty = 0, that correspond to non-inertial walkers, may be viewed
as a case in which Kmin,x = Kmax,x = K0,x and Kmin,y = Kmax,y = K0,y. Periods
Tx = Ty →∞, with εx = εy → 0, also correspond to non-inertial walkers.

4 Distances reached by walkers

The initial position of all walkers is, from Equation (1), P0(x0, y0); the final site,
after NS steps, for a particular walker, is Pw,NS(xw,NS, yw,NS). An end-to-end mean
distance could be defined as

δ =
1

NW

NWX
w=1

q
(Xw,NS −X0)2 + (Yw,NS − Y0)2 (10)

where NW is the total number of walkers.

5 Simplifications

In all the numerical experiments that follow, we will work with some simplifi-
cations to the equations in order to study ‘isotropic’ random walkers, i.e., walkers
with the same properties along both axes X and Y. We will assume that possi-
bilities are K0,x = K0,y = K0 = 0.5, and Kmin,x = Kmin,y = Kmin = 0 and
Kmax,x = Kmax,y = Kmax = 1; increments are εx = εy = ε. In consequence,
Tx = Ty = T .
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6 Two introductory examples

Figure 1 shows NW = 28 non-inertial random walkers, each one with NS =
3000 steps. The origins of each walk are distributed at random in a square region of
sides equal to 500 units of length. Their main characteristic is the typical wiggling
of their paths. Due to the aspect of these walks, no care has been taken to give
information about their point of origin since it would be irrelevant. It should be
stressed that each walk, if stretched, would be NS = 3000 units of length. Instead,
from equation (10), δ ≈ 50 ≈ √NS. These two lengths, 3000 and 50, give an idea
of how wrapped up or folded their paths are.

Figure 1. NW = 28 non-inertial random walkers with NS = 3000 steps. Each one of them

starts its path from different points chosen at random on a surface herein limited by a frame

of 500 units of length. The end-to-end distance they reach is different for each walker; at

the lower line of walkers there is one with a distance of 113 units of length; the walker at the

bottom line (extreme right) reaches only 9 units. See Figure 3 for a reliable mean value δ.

Figure 2 has the paths of NW = 28 inertial random walkers, also with NS =
3000 steps for each one. Their initial conditions are: K0 = 1/2, Kmax = 1, Kmin = 0
and ε = 0.002; with these values and Equations (8) and (9), the period becomes
T = 250. The region where all paths are contained is a square of sides equal to
2000, i.e., four times larger than in Figure 1. The end-to-end mean distance, given
by Equation (10), is δ ≈ 375. Compare this result for an inertial walker with δ ≈ 50
for the non-inertial one; they anticipate an important property of inertial walkers:
they reach much longer distances than non-inertial ones. We will return to this
property later on.
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Figure 2. NW = 28 inertial walkers with NS = 3000 steps start their paths on a region

limited by a frame of 2000 units. The increment of probabilities is ε = 0.002. Kmax = 1,

Kmin = 0 and K0 = 0.5; therefore the period is T = 250. Notice how different these

trajectories are from those of non-inertial walkers of Figure 1. End-to-end distances vary

over wide ranges; see a good average δ in Figure 4.

The paths of these inertial walkers are not so irregular if compared with those
of the previous case. Their aspect is entirely different: they show long stretches in
what seem to be straight lines; these would be the abovementioned tunneling effect.
All paths are zigzagging, i.e., they are far from straight lines, but the scale of the
drawing simulates paths with sectors along a line. Some of the samples, not all of
them, seem to have an abrupt change of direction; these are the places where the
walkers meet conditions of equations (6) and (7), i.e., the slap in the face. We have
denoted with a full circle the origin of the path of each inertial walker.

Although we do not intend to make an accurate comparison between the paths
followed by our inertial walkers and the trajectories followed by Escherischia coli,
we may see some similarities. When talking about these bacteria, Berg and Brown
[25] say: “The motion appears as an alternating sequence of intervals during which
changes in direction are gradual or abrupt — we call these ‘runs’ and ‘twiddles’,
respectively.”

There are all kinds of walks in Figures 1 and 2, and we may draw a good idea of
how differently they behave only by inspecting these two figures. However, better
information is obtained if the number NW of independent walkers is increased and if
the origin of all walks is a single point in the region. This is accomplished in Figures
3 and 4, for non-inertial and inertial walkers, respectively. The former shows the
characteristic disorder of classical non-inertial walkers, with a high density of places
visited near the origin of all walks and a scarce number of walkers who make long
excursions far from the origin. Inertial walkers, on the contrary, show a certain
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degree of disorder but they seem to prefer visits on some specific places. These sites
are at the intersection of vertical and horizontal lines separated by multiples of the
period T = 250.

Figure 3. NW = 1000 non-inertial walkers with NS = 6500 steps. All of them start their

paths from the same point, at the center of region limited by a frame of 450 units of length.

The mean distance they reach is shown with a white circle of radius δ = 71 units.

Figure 4. NW = 1000 inertial random walkers with NS = 6500 steps. All of them start

at the center of the region limited by a frame of 2000 units. The mean distance reached by

the walkers is shown with a white circle of radius δ = 571 units of length.



36 Revista Ciências Exatas e Naturais, Vol. 4, no 1, Jan/Jun 2002

7 Frequency distribution of visits

The sites visited by walkers are one unit of length apart from each other, which
is also the length of each step. We will study NW = 10000 independent walkers,
each one with NS = 7000 steps; consequently, there will be NS ×NW = 70× 106
visits.

Figure 5 shows the frequency distribution of non-inertial walkers, with the well
known sharp peak at the origin and a smooth tendency to zero far from it. This
distribution of frequencies is a sum of Gaussian surfaces because we include all the
steps of the walkers.

Figure 5. Frequency distribution of visits along X- and Y-axes generated by NW = 10000

non-inertial walkers with NS = 7000 steps. Notice the characteristic sum of Gaussian

surfaces with a sharp peak at the origin. The maximum frequency is 26634 and the mean

end-to-end distance is δ = 73.7.

Figure 6 also corresponds to a total of NW = 10000 inertial walkers, each with
NS = 7000 steps; their inertial properties are identified by K0 = 0.5, Kmax = 1,
Kmin = 0, ε = 0.025 and T = 20.

The top of the hills of the landscape show peaks of high frequencies; the sur-
rounding valleys denote sites of lower frequencies of visits. The total number of
possible visits is also NS ×NW = 70 × 106. The site with a maximum number of
visits (12327) is the origin of coordinates; neighboring peaks (to the North, South,
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East and West) are visited a lower number of times; those to the North-East, North-
West, South-East and South-West are visited with still lower number of times. After
these second highest peaks and further away from the origin there are many peaks
with lower frequencies.

We may view the sites with peaks of frequencies as pits or holes, i.e., places
where walkers enjoy to stay more time than in others, a situation suggested by
mathematical models in chromatography [4, 9, 10].

Figure 6. Frequency distribution of visits along X- and Y-axes of NW = 10000 inertial

walkers each one with NS = 7000 steps and ε = 0.025. Kmax = 1, Kmin = 0, and K0 = 0.5;

therefore the period is T = 20. Notice the sharp peaks separated by multiples of the period

in both X- and Y- directions. The maximum frequency is 12327 and the mean end-to-end

distance is δ = 214.7.

8 Relation between distances, periods and number of
steps

It may be of interest to determine the form of the function

δ = Φ(T,NS) (11)

that relates the distance reached by inertial walkers, the period and the number of
steps. It is shown in Figure 7 for NS = 2500, 2000, 1500, 1000 and 500.
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Figure 7. End-to-end mean distance as a function of the period T , for constant values

of NS; from top to bottom: NS = 2500, 2000, 1500, 1000 and 500 steps. Each full circle

corresponds to NW = 1000 walkers. Dotted lines show the critical periods Tc for which

distances reach a maximum, δmax. T = 0 and T → ∞ denote non-inertial walkers which

correspond to δmin. An important observation of these curves is that all distances reached

by inertial walkers are greater than those of the non-inertial ones.

It may be seen that, for a constant number of steps, NS, distances are a mini-
mum, δmin, for T = 0 and for T →∞, i.e., for non-inertial walkers.

For inertial walkers and for the range 0 < T < ∞ an interesting phenomenon
is found: There is a particular period, herein called critical period, Tc, for which
walkers reach a maximum distance, δmax. The critical period is shown with dotted
lines in Figure 7.

A relatively large number of numerical experiments allows to express

Tc = 0.0851NS + 288.22 (12)

from Figure 8, and

δmax = 0.1054NS + 314.46 (13)

from Figure 9. Both equations are valid for the interval 5000 ≤ NS ≤ 100000.
From the two previous equations, Tc = 0.81 δmax + 28, or,

Tc
δmax

≈ 0.81.
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Figure 8. Tc as a function of NS in the interval 5000 ≤ NS ≤ 100000.
A good fit is Tc = 0.0851NS + 288.22.

Figure 9. δmax as a function of NS in the interval 5000 ≤ NS ≤ 100000.
The linear function, δmax = 0.1054NS + 314.46, fits in a reasonable manner.

Let us assume that the inertial random walkers we are herein studying are bacte-
ria. Taking into account the time bacteria has survived in our planet we should have
respect for their capacity to choose the best way to use their energy when looking
for food; their energy could be measured with the number of steps, NS. If bacteria
need a maximum distance with their available energy we are tempted to assume
that these alive creatures might choose an inertial behavior with a critical period.
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9 Conclusion

Random walkers who forget the direction of the previous step and have no
influence upon the following step may be called non-inertial walkers. On the other
hand, random walkers who take into account the direction of the previous step when
they are about to make a new step may be called inertial walkers.

It is found that inertial walkers may reach longer distances than non-inertial
walkers. According with the way inertia has been given to the walkers in this paper
there are sites that are visited with more frequency than others. The distances
between peaks of frequency are herein called periods. Numerical experiments show
that there is a critical period for which the distance reached by inertial walkers is a
maximum.
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