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Abstract: The aim of the present work is to investigate the performance of the method
bootstrap for estimating the sampling distribution of intensity of disease cases located in dif-
ferent geographical areas when sampling is made through cases located in a sample of square
area. Simulated data from a design factorial experiment were applied to study the effects
of type of pattern, number of quadrats, number of quadrats sampled, number of bootstrap
samples and number of events in the pattern on the bootstrap confidence intervals for spatial
intensity. It was observed that the bootstrap estimate of the standard error and consequently
of the confidence interval for spatial intensity depends on all the main factors except for
the number of bootstrap samples. The performance of the method bootstrap was dubious to
estimate sampling distribution for spatial intensity when the sampling is based on a sample
of quadrats. These results can help the public health planners with results about estimates
of the number of disease cases in a geographical area, starting from a sample of locations of
cases within specific regions.
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Resumo: O objetivo do presente trabalho € investigar o desempenho do método bootstrap
para estimar a distribuicao amostral da intensidade de casos de doencas localizadas em
diferentes dreas geogrdficas quando se utiliza contagem de casos localizados em uma amostra
de dreas quadradas. Dados simulados de um experimento fatorial planejado foram aplicados
para estudar os efeitos de tipo de configuracdo espacial, nimero de quadrados, nimero de
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quadrados na amostra, nimero de amostras bootstrap e niumero de eventos na configura¢ao
nos intervalos de confian¢a bootstrap para a intensidade espacial.

Foi observado que a estimativa bootstrap do erro padrao e, conseqientemente, do inter-
valo de confianga para a intensidade espacial dependem de todos os fatores analisados com
excecao do numero de amostras bootstrap.

A performance do bootstrap foi duvidosa para estimar intensidade espacial baseada em
uma amostra de quadrados. FEstes resultados podem ajudar os planejadores da drea de saude
publica com resultados sobre estimativas do numero de casos de doenca em uma drea ge-
ogrdfica, a partir de uma amostra de casos localizados dentro de regides especificas.

Palavras-chave: bootstrap, configuracoes de padroes espaciais, intensidade espacial, loca-
lizacdo de doencas

1 Introduction

The use of maps and the concern with the geographical distribution of diseases
are very old. The Scottish naval surgeon James Lind published in 1768 a book
called An FEssay on Diseases Incidental to Europeans in Hot Climates in which
he seeks explanations for the distribution of diseases, considering risks to certain
specific geographical areas. Ever since, several works have been written in the field
of geographical epidemiology, describing area variations in the distribution of disease
cases (e.. BARRET, 1999; CHRISTMAN, 2000; LAWSON et al., 1999; SNOW, 1854). It
stands out, among others, the study of SNOW (1854) that used mapping techniques
to relate the cases of cholera and points of collection of water in the center of London
during the nineteenth century.

In a first approach to the study of the geographical distribution of diseases, each
case can be idealized as a point and a set of n point locations, distributed by a
stochastic process within some study region R, can be considered a spatial point
pattern.

The analysis of a spatial point pattern depends on the way in which the pattern
is observed. If the pattern is represented by all the events (mapped), the null
hypothesis of completely spatial randomness (CSR) can be tested and then, if the
null hypothesis is rejected, a complete stochastic model can be fitted to represent
the spatial distribution of the events. However, mapped data in public health can
be difficult and expensive and therefore not feasible. In this case, one will have to
use a sample of events of the region (sparse sampling) to drive the research. The
first interest of the analysis of sparsely sampled point patterns is usually aimed
at estimating the number of events (disease cases) within some specific region or,
equivalently, the intensity, defined in the theory of spatial point patterns to be the
mean number of events per unit area region. It is also possible to test the hypothesis
of completely spatial randomness (e.g. DIGGLE, 1983).

A number of the so called sparse sampling methods (e.g. quadrat counts, kernel,
line transects, distances) have been developed for estimating spatial intensity. DIG-
GLE (1983) and UPTON and FINGLETON (1985) provide a review of the advantages



Joao Domingos Scalon and Fldvio Mattar Silva 61

and disadvantages of these methods. Those authors advocate that the simplest one
is the quadrat counts and therefore, we are assessing this method in the present
work.

In quadrat counts, the number of events falling into each sample of small sub
regions (called quadrats) are recorded. Thus, the estimate of the intensity is based
on these records. In order to facilitate the interpretation of the quadrat counts
method, one can imagine that the region of interest is a city where the quadrats are
the blocks and the events are the location of the disease cases within the blocks.

Point estimates of intensity may be difficult to interpret without some idea of
their accuracy. In the last years, a resampling method called bootstrap has been
a popular tool for constructing confidence intervals in many branches of statistics,
also for point patterns (e.g. EFRON and TIBSHIRANI, 1993). Indeed, some authors
(e.g. BRAUN et al., 1998; COWLING et al., 1996; SNETHGALE, 1999) have developed
statistical procedures using bootstrap techniques. All these papers deal with the
accuracy of the intensity point estimation just for time point processes. CRESSIE
(1993) points out that although there is a considerable overlap of methods for point
processes occurring in space and for those occurring in time, it would be wrong to
say that the results obtained in the temporal case can be applied directly to the
space case.

We observe that very little work has been done on how well the bootstrap works
in practice in spatial point patterns. HALL (1985) has investigated the possibility
of resampling a spatial point pattern. He has suggested that resampling provide a
unified and philosophically attractive approach to several problems of inference such
as constructing confidence intervals. SOLOW (1989) has proposed and illustrated
the use of the bootstrap to estimate the sampling distribution of Bith’s distance-
based estimator of intensity. SOLOW (1989) showed that the bootstrap performed
fairly well in estimating that distribution.

The drawback of HALL's (1985) study is that he has evaluated the resampling
methods through pure theoretical treatment. One limitation of SOLOW's (1989)
work is that he has evaluated the bootstrap method only through a particular data
set. It is well known that an estimate of intensity depends on, among other factors,
the type of the spatial point pattern (e.g. DIGGLE, 1983; UPTON and FINGLETON,
1985).

The main question is: Does the bootstrap sampling distribution of the spatial
intensity also depend on these factors? Thus, for a proper evaluation of the bootstrap
method, we require repeated application to independent random samples from the
same populations in a vast range of conditions. Consequently, the results obtained
by SOLOW (1989) cannot be applied directly in practical situations in geographical
epidemiology. Thus, the main purpose of the present work is to investigate, through
simulation from a design factorial experiment, how well the bootstrap performs in
estimating the sampling distribution of the intensity of disease cases in different
spatial point patterns.
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2 Methods

A factorial design was conducted, as described in MONTGOMERY (1991), with
five factors and two levels each factor, exclusively through simulation, to investigate
the performance of the bootstrap for estimating intensity in sparsely sampled spatial
point patterns.

The dependent variable of interest was the estimated standard error of spatial
intensity. We have adopted a quadrat counts-based estimator of intensity, where the
study region with area R is divided in ¢ quadrats of equal size. Once the ¢ quadrats
have been positioned, in the next stage, it is chosen randomly ¢ quadrats. Then, the
number of events falling into each of the ¢ quadrats is recorded (i =1, ..., q). In this
case, the simplest analytical estimator of intensity, derived from DIGGLE (1983), is
given by the expression

A= R

(1)

UPTON and FINGLETON (1985) and LAWSON et al. (1999) point out that
under the supposition that the disease cases are distributed at random, and therefore
the observations come from a homogeneous Poisson process with parameter A, the
expression (1) is always an unbiased estimator for intensity, where its standard
deviation is given, approximately, by the equation

q 1/2
CQZX]'
_ | =t
S\ = R (2)

An example of how to get an estimate of intensity and its standard deviation
by using the quadrat counts method is presented in the Figure 1. We consider a
sample of four quadrats at the corners with 7, 3, 7 and 4 events falling into each of

4

the quadrats (marked) and therefore ¢ =4, ¢ =9, R=1and ) X; = 21. Thus,
j=1

applying the expressions (1) and (2), one can get, respectively, estimates of intensity

and standard deviation, approximately, equal to 47 and 20.62 events per unit square
area.

In this work the main factors of interest (independent variables) are: number of
quadrats in the region (QUA), number of quadrats sampled (SAM), type of patterns
(PAT), number of events within the patterns (EVE) and number of bootstrap samples
(DRA).
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Figure 1. Quadrat counts method for estimating the spatial intensity in a
homogeneous Poisson point pattern with 50 events within a unit square area.

To study the effect of the number of quadrats in the region, we used two levels
(16 and 36 quadrats), while the effect of the number of quadrats sampled was studied
by using the levels 8 and 12 samples.

To examine the influence of the factor type of pattern, we had also used two
levels: the completely spatial randomness and cluster that represent common types
of incidence of disease cases in geographical epidemiology. The completely spatial
randomness (CSR), or the homogeneous Poisson process, is the basic model for the
spatial configuration of events. We can say that the cases of diseases are randomly
distributed within the region R with intensity A, or equivalently, that the location
of the events within a study region is a random sample of a uniform distribution.
Observe that just one parameter A is necessary to define the homogeneous Poisson
process (e.g. CRESSIE, 1993; DIGGLE, 1983). In this work we have simulated CSR
patterns with 25 or 100 events in a unit square area.

The Poisson cluster process (CLU) incorporates an explicit form of spatial clus-
tering and assumes a mechanism in which events tend to group around each other.
It suggests a formation of relatively dense sub-regions of events over the region R
under consideration. More formally, we have a parent process P, usually a homo-
geneous Poisson process with intensity A and a daughter process D. A sample of
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parent processes produces, independently, a random number of daughter processes
with the same radial variability s. Each daughter process is, independently, spatially
distributed relatively to the corresponding parent process. The cluster process may
consist either of the superposition of the daughter process only or of the superposi-
tion of parent and daughter processes. Observe that it is necessary three parameters
to define the Poisson cluster process: the intensity A, the number of elements of the
parental process P and the radial variability s of the distribution of the daughter
process about of the paternal (e.g. CRESSIE, 1993; DIGGLE, 1983). In this work
we have simulated cluster patterns with 25 or 100 events in a unit square area, 10
parents and radial variability equal to 0.05.

The last factor of interest was the number of bootstrap samples. The idea behind
bootstrap is remarkably simple. In this method, new samples B, each of the same
size as the observed original sample, are drawn, with replacement, from the observed
original sample. The spatial intensity is first calculated using the observed original
sample and then recalculated using each of the new samples (bootstrap samples),
yielding a bootstrap distribution. This resulting distribution can be used to make
inferences about the spatial intensity. One way of doing this is the development of
confidence intervals around the spatial intensity, given both intensity and standard
error estimates. There are several bootstrap methods available for constructing
confidence intervals. In this work we are using the normal approximation method,
in which the bootstrap estimates of the intensity and standard errors are the mean
and the standard deviation of the B samples (e.g. EFRON and TIBSHIRANI, 1993).
In this work we adopted B equal to 250 or 1000.

After selecting the number of levels for each factor, we run experiments with
all possible combinations. In our case, we had two levels for all five factors and
therefore, our 2 x 5 factorial design required 32 runs.

We now give an example of a particular run in our factorial design. For this, we
have used the following combination: PAT = CSR; EVE = 100; QUA = 16; SAM
= 8 and DRA = 250. The simulation work is as follows:

e STEP 1 - We simulated a CSR pattern with 100 events in a unit square area
such as presented above.

e STEP 2 - The CSR pattern was divided in 16 quadrats with the same size.
e STEP 3- The number of events falling into each quadrat was recorded.

e STEP 4 - A sample of 8 quadrats was randomly chosen and their respective
events were recorded.

e STEP 5 - Estimate of intensity was obtained by using the equation (1).

e STEP 6 - The bootstrap estimates of intensity and standard error were found by
drawing randomly with replacement 250 times the original sample set obtained
at step 4, where the bootstrap estimate intensity was given by the following
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expression

250
> A

N
AB =505 (3)

while the bootstrap standard error was given by the following expression

250 . \271/2
(5. 30)
SE= 1= @)

e STEP 7 - The 95% confidence intervals based upon the bootstrap (normal
approximation method) can be obtained using the expression

A+1.96 x SE (5)

e STEP 8 - The simulation in steps 1 to 7 were repeated for each treatment
combination until we had completed the 32 runs.

We applied the analysis of variance, as described in MONTGOMERY (1991),
for estimating the main effects and two-factor interaction on the standard errors
provided by the 32 runs of the factorial experiment. We used the function “aov’,
available in the software S-PLUS (1997), for carrying out such analysis.

3 Results

Table 1 shows the results of the simulation work from the 32 runs of the design
factorial experiment where one can see that all real spatial intensity are included
in the confidence intervals. The point estimates of intensity were also significantly
positively related to the real intensity (R = 0.96, P < 0.001). By calculating the
Pearson correlation coefficient (R) from the results presented in Table 1, we got
that the two measures of variability (analytical and bootstrap) were significantly
positively related (R = 0.67, P < 0.001).
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RUN QUA SAM EVE DRA PAT A SD(A) SE IL SL

1 16 08 100 250 CSC 110.00 41.95 13.95 82.65 137.34
2 16 12 100 250 CSC  94.67 38.92 12.85 69.48 119.86
3 16 08 25 250 CSC  28.00 21.17 3.95 2026 35.74
4 16 12 25 250 CSC 22,67 19.04 3.07 16.65 28.69
) 16 08 100 1000 CSC  94.00 38.78 15.08 64.44 123.56
6 16 12 100 1000 CSC 9733 3946 13.10 71.65 123.01
7 16 08 25 1000 CSC  28.00 21.17 3.68 20.79 35.21
8 16 12 25 1000 CSC 2533  20.13 3.54 1839 3227
9 16 08 100 250 CLU 98.00 39.60 46.94 5.99 190.00
10 16 12 100 250 CLU 96.00 39.19 35.93 25.58 166.42
11 16 08 25 250 CLU 20.00 17.89 10.39 0.36  40.36
12 16 12 25 250 CLU 28.00 21.17 921 995 46.05
13 16 08 100 1000 CLU 140.00 47.33 47.07 47.74 232.26
14 16 12 100 1000 CLU  78.67 3548 33.30 13.40 143.93
15 16 08 25 1000 CLU 22.00 18.76 9.36 3.65 40.34
16 16 12 25 1000 CLU 2533 20.13 991 591  44.75
17 36 08 100 250 CSC  84.00 54.99 10.37 63.67 104.32
18 36 12 100 250 CSC 100.00 60.00 12.06 76.36 123.64
19 36 08 25 250 CSC  28.00 3175 6.82 14.63 41.36
20 36 12 25 250 CSC 2533  30.20 548 1459  36.07
21 36 08 100 1000 CSC 108.00 62.35 15.04 78.52 137.48
22 36 12 100 1000 CSC  90.67 57.13 11.55 68.03 113.31
23 36 08 25 1000 CSC  24.00 2939 6.26 11.73  36.27
24 36 12 25 1000 CSC 1733 2498 3.87 974 2491
25 36 08 100 250 CLU 122.00 66.27 55.84 12.55 231.45
26 36 12 100 250 CLU 94.67 5838 3897 1829 171.05
27 36 08 25 250 CLU 24.00 29.39 12.68 -0.85 48.85
28 36 12 25 250 CLU  30.67 33.23 13.58 4.05 57.29
29 36 08 100 1000 CLU 128.00 67.88 58.14 14.04 241.95
30 36 12 100 1000 CLU 108.00 62.35 39.44 30.69 185.30
31 36 08 25 1000 CLU  34.00 3499 16.76 1.15 66.89
32 36 12 25 1000 CLU  33.33 3464 1224 934  57.32

Table 1 - Point estimates of intensity (\), standard deviations (SD ), standard errors (SE),
inferior limits (IL) and superior limits (SL) for 95% bootstrap confidence intervals for spatial
intensity from the 2 X 5 design factorial experiment. The main factors are: number of
quadrats in the region (QUA); number of quadrats sampled (SAM); type of patterns (PAT);
number of events within the patterns (EVE) and number of bootstrap samples (DRA).
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Table 2 summarizes the results of the analysis of variance for the estimates of
both intensity and standard error where we can see that all main factors are sta-
tistically significant on the estimate of the standard deviation. Table 2 also shows
that all main factors, except the number of bootstrap samples from the available
quadrats, are statistically significant on the bootstrap estimate of the standard er-
ror. There are also many second-order interactions statistically significant on both
estimates.

Source of Standard deviation Standard error
variation F P F P
QUA 248.853 < 0.001 7.590 0.014
SAM 3.010 0.097 18.569 < 0.001
EVE 605.429 < 0.001 364.402 < 0.001
DRA — — 0.131 0.721
PAT 4.659 0.042 321.964 < 0.001
QUAXSAM 0.223 0.641 0.779 0.390
QUAXEVE  23.692 < 0.001 0.006 0.936
QUAXDRA — — 0.258 0.618
QUAXPAT 5.242 0.032 6.321 0.023
SAMXEVE 2.097 0.162 10.655 0.005
SAMxDRA — — 0.723 0.407
SAM X PAT 0.137 0.714 10.183 0.005
EVExDRA — — 0.097 0.759
EVEXSAM 0.415 0.526 127.058 < 0.001
DRA XPAT — — 0.003 0.959

Table 2 - Results of the analysis of variance (F-statistics and P-values) of the standard
deviation and bootstrap standard error versus the main factors: number of quadrats in
the region (QUA); number of quadrats sampled (SAM); type of patterns (PAT); number of
events within the patterns (EVE) and number of bootstrap samples (DRA). The symbol

2

“x” means interaction between the two main factors. The symbol “ — ” means that the

value is not available.

4 Discussion

The purpose of the present work was to investigate, through simulation, how
well the bootstrap method performs estimating sampling distribution of the spa-
tial intensity of disease cases in a particular geographical region. The estimate of
the intensity of disease cases in a region can be useful in those cases where the
epidemiologist needs to know the number of cases occurring in a region based just
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on a sample of disease cases. Although there are many procedures available for
estimating point intensity, such as angle-count, areal, kernel, line transects and dis-
tance based methods (e.g. UPTON and FINGLETON, 1985), we focused our work
on quadrat counts because some authors, such as CHRISTMAN (2000), CRESSIE
(1993), DIGGLE (1983), LAWSON et al. (1999) and UPTON and FINGLETON (1985)
advocate that this method is the simplest and therefore, the most popular for point
estimate of intensity in sparsely sampled spatial point patterns.

First of all, one may be interested in knowing whether the bootstrap is capable
for predicting correctly the real spatial intensity. We have observed an almost perfect
positive relationship between the point estimates of intensity and the real intensity
(R =0.96, P < 0.001). Table 1 also shows that all real spatial intensity is included
in the 95% bootstrap confidence intervals. Thus, there is no reason to be afraid of
the method.

We know that all analytical expression available for the standard error of inten-
sity depends on the intensity, type of pattern, total area of the quadrats as well as
the size of the used quadrats (e.g. CHRISTMAN, 2000; UPTON & FINGLETON, 1985).
Another way to get the variability of the estimates is through the sampling distribu-
tion of the estimators. In this work, we have suggested the use of bootstrap, which is
non-parametric, since it is not necessary to specify a model of the underlying spatial
process.

One may be also interested in knowing whether there is a relationship between
bootstrap and analytical methods for variability estimates. We used the Pearson
correlation coefficient (R) to examine the possibility of such relationship. Although
we observe (Table 1) a positive relationship between the two estimates (analytical
and bootstrap) (R = 0.67, P < 0.001), the bootstrap leads to smaller variability
measures than the analytical method. Thus, the bootstrap can provide more precise
estimates than the analytical method.

A simulation-based design factorial experiment was used to answer more specific
questions: What are the main factors that affect both the bootstrap standard er-
rors and standard deviation of intensity? Do the factors act independently on the
estimates? We observe that the use of a factorial experimental design is a novel
approach for assessing the effectiveness of that sampling distribution.

The analysis of variance (Table 2) shows that the number of events in the pattern
effect is statistically significant (P < 0.001). We observe that the larger the number
of events in the pattern, the bigger is the standard error, that is, the variability
is directly proportional to the intensity of disease cases. The factor number of
quadrats seems to be statistically significant and therefore there is quadrat size
effects in the bootstrap estimates (P < 0.001). The results showed sampling area
effect (P = 0.073) on the bootstrap estimates. The analysis of variance showed that
the bootstrap estimator is directly linked to the identification of the patterns (P <
0.001). Actually, the bootstrap estimator tended to provide larger values of standard
errors in cluster patterns than in random patterns. Thus, it is always a good idea
to perform a test against the hypotheses of randomness before estimating intensity.
For a review of the methods available for testing against spatial randomness, one can
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see CRESSIE (1993) and DIGGLE (1983). As we expected, the number of bootstrap
samples was not statistically significant for estimating intensity because we used 250
and 1000 samples drawing in our experiment. These numbers are compatible with
EFRON and TIBSHIRANI (1993) suggestions. They argue that replications equal 50
is often enough to give a good estimate. Very seldom are more than 200 replications
needed to estimate the standard error. Much bigger replications (between 200 and
1000) are required for the bootstrap confidence intervals.

The analysis of variance showed that both estimators (analytical and bootstrap)
tended to provide, in general, the same statistically significant results. Thus, these
results show that there is no need to carry out bootstrap, as the analytical estimator
leads to results which can be obtained simplier without simulation.

Even though the performance of the bootstrap estimates of standard error for
the estimates may be affected by many factors, we observe that the bootstrap is
still a practical method for estimating the sampling distribution of the estimate of
intensity, whether or not one knows the underlying model of the process.

We observed that, if the original sample is not representative of the underlying
pattern, the bootstrap estimates can be biased. SOLOW (1989) drew the same
conclusion. For example, it is quite difficult to obtain representative samples in
cluster point patterns. This fact can explain the significance of the main factor type
of pattern and the interactions between type of pattern and number of events and
between type of pattern and number of quadrats in the study region on the standard
error. Table 1 shows that, in general, the precision of the bootstrap estimates is worse
in cluster point patterns, that is, the standard error of the bootstrap estimates in
cluster point patterns are, in general, bigger than estimates in CSR, point patterns.

We noted some outliers for the estimates of standard error as we one can see the
run numbers 25 and 29 (Table 1). These outliers can be explained as a peculiarity
with the bootstrap method in sampled spatial point pattern. Since a bootstrap
sample is randomly drawn with replacement from the original sample, some of the
observations will be included more than once in each replication. For example, a
particular bootstrap sample could be formed only by quadrats with large numbers
of events (e.g. cluster). As a consequence, estimates from bootstrap samples can be
considerably large.

Although the ideas behind the bootstrap are simple, elegant and powerful, its
performance is dubious for estimating the intensity (and its standard error) of dis-
ease cases located in different geographical areas when sampling is done by selecting
quadrats. Thus, the method must be evaluated in other types of point processes,
such as those with events regularly distributed (e.g. simple inhibition and Markov
point processes), described in CRESSIE (1993) and DIGGLE (1983). It is also neces-
sary to perform an evaluation of bootstrap methods on other estimators of intensity,
such as distance, areal and line transects, as described in UPTON and FINGLETON
(1985). The use of bootstrap methods in other fields of spatial point patterns (e.g.
to multivariate point pattern, tests of randomness) could also be investigated.
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5 Conclusions

The simulations showed that the bootstrap estimates of the standard error and
consequently, the confidence interval for spatial intensity depends on all the main
factors, except for the number of bootstrap samples. Thus, in practice, there is
no need to carry out bootstrap for constructing confidence regions for the spatial
intensity, as the analytical estimator leads to results which can be obtained simplier
without simulation. We expect that the results provided by this work may propitiate
to the researcher some directions that can be useful in cases where they need to know
quickly, and in a precise way, the number of disease cases in a geographical area,
starting from a sample of case locations in a specific region.
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