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Abstract: An economical method discovered by Znojil to ¯nd the limiting value of a par-
ticular function, of interest in problems like the spiked harmonic oscillator, is applied and
generalized. The result thus obtained is then applied to ¯nd closed form expressions for the
sums of some in¯nite series involving gamma functions.
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Resumo: Aplica-se e generaliza-se um m¶etodo econômico descoberto por Znojil para encon-
trar o valor limite de uma fun»c~ao particular de interesse em problemas como o do oscilador
harmônico agudo. O resultado assim obtido ¶e, ent~ao, aplicado para encontrar express~oes em
forma fechada para somas de algumas s¶eries in¯nitas envolvendo fun»c~oes gama.
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1 Introduction
Since the pioneering papers by Ezawa et al. [1], and Detwiler and Klauder [2] on

supersingular potentials, an extensive literature has been developed on the subject.
The supersingular potential behaves abnormally in enough ways to exclude it from
being classi¯ed as a regular potential. More speci¯cally, by a supersingular potential
is meant the particular potential which has the property that every matrix element
of the perturbation potential with respect to the unperturbed eigenstates is in¯nite
or does not exist [2].

The spiked harmonic oscillator system Hamiltonian reads as follows

H = ¡ d2dr2 + r2 + ¸
r® (1)

where ¸ is a de¯nite parameter which measures the strength of the singular potential,
and ® is a positive constant de¯ning the degree of the singularity.

The Hamiltonian (1) renders the phenomenon of supersingularity when the ex-
ponent ® is such that ® ¸ 5=2. For ® < 5=2, Eq. (1) de¯nes the nonsingular spiked
harmonic oscillator (NSHO) problem which has been a subject of an extensive study
in the past few years [3-5]. In Ref. [3], Aguilera-Navarro and Guardiola introduced
a function F de¯ned as

F =X
n6=0

(®=2)2n
4(n+ 1)(3=2)nn! =

1
2²2

·
2F1

µ
²; ²; 12 ; 1

¶¡ 1¡ 2²2¸ (2)

where ² = ®=2¡ 1 and (z)n is the Pochhammer symbol.
Clearly, F is not de¯ned for ® > 7=2, i.e. ² ¸ 3=4, and requires careful treatment

when ® = 2; since, in this case, ² = 0: Aguilera-Navarro and Guardiola [3] evaluated
F for ® = 1=2, ® = 1; and ® = 3=2 and the results were employed in the corre-
sponding determination of the analytic approximations for the ground-state energy
of the NSHO for the same values of ®: The evaluation of the function F for the
limiting case ® = 2 was treated separately shortly thereafter [6]. A more simple
and singularly elegant method for doing the latter evaluation of the function F was
recently discovered by Znojil [7].

In this work we employ Znojil's method [7] to evaluate the limit of a function
closely related to F. Our generalization turns out to be quite useful for the evaluation
in closed form of in¯nite series whose terms involve ratios and products of gamma
functions.

2 Procedure
We purport to show that the following relation holds

L(c; x) = lim²!0[2F1(²; ²; c;x)¡ 1]²¡2 = ¡(c)
1X
n=1

¡(n)xn
n¡(n+ c) (3)
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In order to ¯nd L(c; x); we set a = b = ² in the usual de¯nition of the Gauss
hypergeometric function [8]

2F1(a; b; c;x) =
1X
n=0

¡(n+ a)¡(n+ b)¡(c)
¡(a)¡(b)¡(n+ c)

xn
n! (4)

to get
L(c; x) = lim²!0

" 1X
n=0

¡2(n+ ²)¡(c)
¡2(²)¡(n+ c)

xn
n! ¡ 1

#
²¡2 (5)

The term corresponding to n = 0 in the in¯nite series cancels with the negative
one within the square brackets yielding

L(c; x) = lim²!0
" 1X
n=1

¡2(n+ ²)¡(c)
²2¡2(²)¡(n+ c)

xn
n!
#

(6)

Since
lim²!0¡(n+ ²) = ¡(n) and lim²!0 ²¡(²) = lim²!0¡(²+ 1) = 1 (7)

it follows that the sought for limit is given by

L(c; x) =
1X
n=1

¡2(n)¡(c)
¡(n+ c)

xn
n! (8)

Finally, the relation ¡(n) = (n¡ 1)! leads to the relation (3) above.
We are now ready to evaluate in closed form the sum in (3), when the argument

x equals 1. In other words, we want to ¯nd a closed expression for the following
in¯nite sum

S(c) =
1X
n=1

¡(n)¡(c)
n¡(n+ c) = lim²!0 [2F1(²; ²; c; 1)¡ 1] ²¡2 (9)

The special case S(1) follows immediately, since ¡(n+ 1) = n¡(n); namely,

S(1) = lim²!0 [2F1(²; ²; 1; 1)¡ 1] ²¡2 =
1X
n=1

1
n2 = ³(2) =

¼2
6 (10)

where ³(z) is the Riemann zeta function.
The evaluation in closed form of Eq. (9) for other values of c could be accom-

plished using a simple but somewhat long method employing the power series of
ln ¡(1 + z). The most straightforward route known, however, suggested to us by a
paper by Znojil [7], will be employed in this work.

Setting a = b = ² in the well-known expression [9]

2F1(a; b; c; 1) = ¡(c)¡(c¡ a¡ b)
¡(c¡ a)¡(c¡ b) (11)
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and substituting the result in Eq. (9) yields
S(c) = lim²!0

·¡(c)¡(c¡ 2²)
¡2(c¡ ²) ¡ 1¸ ²¡2 (12)

The Maclaurin's expansion of the gamma function reads as [7]
¡(c+ x) = ¡(c)

½
1 + xÃ(c) + 12x

2 hÃ2(c) + Ã(1)(c)i+ ¢ ¢ ¢¾ (13)
where Ã(y) and Ã(n)(y); n ¸ 1; are the digamma and the polygamma functions [10],
respectively.

Employing the expansion (13) twice in Eq. (12) and retaining within the square
brackets only powers of ² up to ²2;the following main result is readily found

S(c) =
1X
n=1

¡(c)¡(n)
n¡(n+ c) = lim²!0 [2F1(²; ²; c; 1)¡ 1] ²¡2 = Ã(1)(c) (14)

where Ã(1)(y) is the trigamma function [11] de¯ned by

Ã(1)(y) =
1X
n=0

1
(n+ y)2 (15)

The in¯nite series in Eq. (15), known in the mathematical literature as Hurwitz's
generalization of the zeta function, has been extensively studied [8, 9], [12-14].

It is worth applying the result Eq. (14) to get the following special cases

S(m) =
1X
n=1

¡(m)¡(n)
n¡(n+m) =

¼2
6 ¡

m¡1X
k=1

1
k2 ; m = 1; 2; 3; : : : (16)

and
S(m+ 1=2) =

1X
n=1

¡(m+ 1=2)¡(n)
n¡(n+m+ 1=2) =

¼2
2 ¡ 4

mX
k=1

1
(2k ¡ 1)2 ; m = 0; 1; 2; : : : (17)

3 Concluding remarks
Our main resul, Eq. (14), is not only compact but also bears a striking resem-

blance to the function F of Aguilera-Navarro and Guardiola [3]. When c = 1; our
Eq. (14) becomes Eq. (10) which is just an alternative way of writing a particular
case of Euler's dilogarithm function [13]. Moreover, Eq. (3) with c = 1 is the diloga-
rithm function of argument x. We have decided to include the derivation of Eq. (3)
with c = 1 not only for the sake of completeness, but also because Mitchell [12], who
¯rst published this relation, did not show explicitly how to prove it.

It is perhaps worth recording that the dilogarithm function arises in topics such
as the analysis of a distorted modulated electric signal [15], as well as in a variety of
other problems of physical and mathematical interest. Among these we mention the
problem of the relation between amplitude and phase in an electrical circuit [16], the
scattering of light by light [17], heat transfer on a circuit cylinder [18], and certain
problems involving the Fermi function [19].
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