The spiked harmonic oscillator revisited
New results

G. A. Estévez-Breton

Department of Mathematics and Physical Sciences
Inter American University
San German, Puerto Rico 00683

T. Maekawa

Department of Physics
Kumamoto University
Kumamoto 860, Japan

(Received: June 10, 2000)

Abstract: An economical method discovered by Znojil to find the limiting value of a par-
ticular function, of interest in problems like the spiked harmonic oscillator, is applied and
generalized. The result thus obtained is then applied to find closed form expressions for the
sums of some infinite series involving gamma functions.
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Resumo: Aplica-se e generaliza-se um método econémico descoberto por Znojil para encon-
trar o valor limite de uma funcdo particular de interesse em problemas como o do oscilador
harmonico agudo. O resultado assim obtido €, entdo, aplicado para encontrar expressoes em
forma fechada para somas de algumas séries infinitas envolvendo funcgdes gama.
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1 Introduction

Since the pioneering papers by Ezawa et al. [1], and Detwiler and Klauder [2] on
supersingular potentials, an extensive literature has been developed on the subject.
The supersingular potential behaves abnormally in enough ways to exclude it from
being classified as a regular potential. More specifically, by a supersingular potential
is meant the particular potential which has the property that every matrix element
of the perturbation potential with respect to the unperturbed eigenstates is infinite
or does not exist [2].

The spiked harmonic oscillator system Hamiltonian reads as follows

2
H= —% +r? 4 i (1)
where ) is a definite parameter which measures the strength of the singular potential,
and « is a positive constant defining the degree of the singularity.

The Hamiltonian (1) renders the phenomenon of supersingularity when the ex-
ponent « is such that a > 5/2. For av < 5/2, Eq. (1) defines the nonsingular spiked
harmonic oscillator (NSHO) problem which has been a subject of an extensive study
in the past few years [3-5]. In Ref. [3], Aguilera-Navarro and Guardiola introduced
a function F' defined as

F= Z n;i‘/?m — = 2%2 {gFl <e,e;%;1> 1262} (2)

where € = a/2 — 1 and (2),, is the Pochhammer symbol.

Clearly, F'is not defined for o > 7/2, i.e. € > 3/4, and requires careful treatment
when « = 2, since, in this case, e = 0. Aguilera-Navarro and Guardiola [3] evaluated
Ffor a =1/2, a = 1, and @ = 3/2 and the results were employed in the corre-
sponding determination of the analytic approximations for the ground-state energy
of the NSHO for the same values of a. The evaluation of the function F for the
limiting case o = 2 was treated separately shortly thereafter [6]. A more simple
and singularly elegant method for doing the latter evaluation of the function F was
recently discovered by Znojil [7].

In this work we employ Znojil’s method [7] to evaluate the limit of a function
closely related to F. Our generalization turns out to be quite useful for the evaluation
in closed form of infinite series whose terms involve ratios and products of gamma
functions.

2 Procedure

We purport to show that the following relation holds

I‘ TL

L{c, il?)—hn(l)[QFl(f ecx)— e ZnI‘n+c

n=1
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In order to find L(c,x), we set a = b = € in the usual definition of the Gauss
hypergeometric function [§]

X I'(n+a)l'(n+b)I(c) 2™
oFi(a, b;c2) = HZZO (F(a)F)(b)(F(n Jr)c)( )F @)
to get
L . I2(n+e)I(c) 2" _
L(C’x)_lg% Lzzomm—lle 2 (5)

The term corresponding to n = 0 in the infinite series cancels with the negative
one within the square brackets yielding

. X T2 (n+e)l(c) 2"
Lle,z) = limy [Z_:l e2r§(e)+r(31 i Z) H] (6)

Since
lin% I'(n+¢€)=TI(n) and limel'(e) = lin% F'e+1)=1 (7)

e—0

it follows that the sought for limit is given by

oo n
Z I'(n + c) ) % ®)
Finally, the relation I'(n) = (n — 1)! leads to the relation (3) above.

We are now ready to evaluate in closed form the sum in (3), when the argument
z equals 1. In other words, we want to find a closed expression for the following
infinite sum

= lim [, F° cei1) — 1] e 2
2:: FTL+C H%[Q 1(676707 ) ]6 (9)

€E—>

The special case S(1) follows immediately, since I'(n + 1) = nI'(n), namely,

00 2
S(1) = limbFi(e L1 - e =3 o =) = (10)
n=1

where ((z) is the Riemann zeta function.

The evaluation in closed form of Eq. (9) for other values of ¢ could be accom-
plished using a simple but somewhat long method employing the power series of
InT'(1 + z). The most straightforward route known, however, suggested to us by a
paper by Znojil [7], will be employed in this work.

Setting a = b = € in the well-known expression [9]

I'(e)l'(c—a—10)

2fi{abieil) = O e =)

(11)
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and substituting the result in Eq. (9) yields

. [I'(e)l(c—2 _
S(e) = lim [% - 1} e (12)
The Maclaurin’s expansion of the gamma function reads as [7]
I(c+z)=T(c) {1 + z(c) + %LL’Q {wQ(C) + @ZJ(I)(C)} + - } (13)

where t(y) and 1/ (y), n > 1, are the digamma and the polygamma functions [10],
respectively.

Employing the expansion (13) twice in Eq. (12) and retaining within the square
brackets only powers of € up to €2,the following main result is readily found

_ Zoo L(e)l(n) _ .. ca 1Y 1] e=2 — (1)
S(C) - — TZF(TL + C) - lg% [2F1 (67 SR 1) 1] € = ¢ (C) (14)
where ¥(1)(y) is the trigamma function [11] defined by
> 1
D)= — 15
O =3 (15)

The infinite series in Eq. (15), known in the mathematical literature as Hurwitz’s
generalization of the zeta function, has been extensively studied [8, 9], [12-14].
It is worth applying the result Eq. (14) to get the following special cases

> T(m)L(n) =2 m_li

Stm) =Y 2 T . m=1,23,. 16
(m) ;nf(ner) 6 =k (16)
and
S(m+1/2):i Lim +1/2)T(n) 21274%# m=0,1,2,... (17)

n'(n+m+1/2) 2

n=1

3 Concluding remarks

Our main resul, Eq. (14), is not only compact but also bears a striking resem-
blance to the function F of Aguilera-Navarro and Guardiola [3]. When ¢ = 1, our
Eq. (14) becomes Eq. (10) which is just an alternative way of writing a particular
case of Euler’s dilogarithm function [13]. Moreover, Eq. (3) with ¢ = 1 is the diloga-
rithm function of argument z. We have decided to include the derivation of Eq. (3)
with ¢ = 1 not only for the sake of completeness, but also because Mitchell [12], who
first published this relation, did not show explicitly how to prove it.

It is perhaps worth recording that the dilogarithm function arises in topics such
as the analysis of a distorted modulated electric signal [15], as well as in a variety of
other problems of physical and mathematical interest. Among these we mention the
problem of the relation between amplitude and phase in an electrical circuit [16], the
scattering of light by light [17], heat transfer on a circuit cylinder [18], and certain
problems involving the Fermi function [19].
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