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Abstract: Di®erent types of random walkers are studied by assuming that they have eight
di®erent possibilities to make steps in pre-determined directions. The walkers are not allowed
to step on already visited places in the plane (self-avoiding walkers). The main variables
chosen to depict their behavior are the number of steps and the distance they reach before
they are trapped. A measure of how the walkers are di®used, an index of how the paths of
the walkers are folded and the e®ect of restricting the region where the walkers may walk are
also studied.
Key words: random walkers, di®usion, octupus walkers, Brownian motion
Resumo: Diferentes tipos de caminhadas aleat¶orias s~ao estudados assumindo que h¶a oito
diferentes possibilidades para caminhar em dire»c~oes pr¶e-determinadas. Aos caminhantes
n~ao ¶e permitido andar em lugares j¶a visitados no plano (caminhantes auto-controlados). As
principais vari¶aveis escolhidas para descrever seu comportamento s~ao o n¶umero de passos
e a distância que eles alcan»cam antes de serem capturados. Uma medida da difus~ao, um
¶³ndice de como as suas trajet¶orias s~ao desdobradas e o efeito de restringir a regi~ao onde eles
podem andar tamb¶em s~ao estudados.
Palavras-chave: caminhadas aleat¶orias, difus~ao, caminhantes octupus, movimento brown-
iano
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1 Introduction
Random walkers have been, and still are, a very powerful tool in pure and applied

mathematics to study problems in physics, chemistry and biology in general [1, 2, 3].
Diverse aspects of the con¯guration and structure of polymer have also successfully
used self-avoiding random walkers. In general the studies are based upon walkers
which can choose at random among four possible orthogonal directions [4, 5, 6].
The purpose of the present study is to present results from numerical experiments
of self-avoiding random walkers who have additional possibilities to choose in order
to make a new step.

2 The octopus walker
It is de¯ned as a walker who may take steps in eight di®erent directions, each one

of them inclined at an angle of 45o with respect to the neighboring directions. One
of these directions is chosen at random in order to take a step. The possibilities, set
as initial conditions for any site in space, for any time and for every walker, sketched
in ¯gure 1, are the following: p(1) (in the East direction), p(2) (North-East), p(3)
(North), p(4) (North-West), p(5) (West), p(6) (South-West), p(7) (South) and p(8)
(in the South-East direction), with the condition that

8X
I=1

p(I) = 1 (1)

The length of each step is equal to unity in directions I = 1; 3; 5 and 7, and equal
to p2 for I = 2; 4; 6 and 8.

Figure 1. The eight possible directions the octopus walker may take during one of
his steps, according with the possibilities, p(I), with I =1 to 8, assigned to each of the
directions. The length of steps is either unity or p2.
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The plane where the walker roams is a grid composed of square cells of sides equal
to unity. There are JF cells along the horizontal and KF cells along the vertical
frontiers of the region, and walks start at the geometrical center of the lattice. A
single step always consists of a displacement from the current lattice site to one of
the eight nearest-neighbor cells. A periodic boundary condition is set to the space,
thus transforming the plane into a torus. However, in the ¯rst part of this study the
space is su±ciently large so that walkers never reach the boundaries. In the second
part of the study we will reduce the size of the space in order to see the e®ect of
con¯nement.

3 Self-avoiding walkers
Provided a random walker is given enough time, and with the characteristics

pointed out in the above paragraphs, he will step on each and every cell of the region,
no matter its dimensions. With this eternal walk, some of the sites may be visited
more than once (overlapping). In order to limit this capacity to walk forever we will
impose to the walker the condition that he will never step on a cell already visited.

When the walker decides to make a new step, he looks for all the free sites
surrounding him; he apportions the possibilities he has been assigned to (as initial
conditions) among the free neighboring sites and chooses one of them at random. If
he fails to ¯nd a free site, it is considered that he has been trapped and, therefore,
his random walk is terminated.

If we denote with (J0; K0) and (Ji; Ki) the initial and ¯nal positions of the
walker, respectively, the distance reached when he is trapped is

Di =
q
(Ji ¡ J0)2 + (Ki ¡K0)2 (2)

When one walker has ended his walk, the number of steps, NSi , and the distance,
Di , are recorded. The grid is cleared and a new walk starts. When a certain number
of walkers, NW, have been studied, a mean number of steps, NSmean, and a mean
distance, Dmean, are computed as

NSmean = 1
NW

NWX
i=1

NSi and Dmean = 1
NW

NWX
i=1

Di (3)

In all our numerical experiments we have taken NW = 10000 random octopus
walkers in order to have reasonable mean results.

4 Possibility p(3) chosen as the independent variable
When any of the possibilities p(I) prevail with respect to the rest, the mean

orientation of the random walk will be in that particular direction. However, the
introductory nature of the notes we are dealing with should start with a more basic
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study: We will use the possibility p(3) as an independent variable in order to study
the properties of the octopus walker. The rest of possibilities will be given by

p(1) = p(3) = p(5) = p(7) (4)

and
p(2) = p(4) = p(6) = p(8) = 1¡ 4 p(3)

4 (5)

When p(3) = 0.25, from the above equations, then p(1) = p(5) = p(7) = 0:25,
and p(2) = p(4) = p(6) = p(8) = 0: The random walkers taking steps with these
possibilities will be herein called `cross walkers'; these walkers were the ones studied
by Hemmer and Hemmer [4]. The literature on this subject deals in general with
cross walkers [7]; many variations on this matter may be found in 1. When p(3) = 0,
then p(1) = p(5) = p(7) = 0, and p(2) = p(4) = p(6) = p(8) = 0:25: These walkers
will be herein called `diagonal walkers'. For any other value of p(3) in the range
0 < p(3) < 0:25 the random walker will be of the octopus type.

5 Mean behavior of a large number of walkers
An example case of the type of results we will be dealing with is the number

of steps, NSi, performed by each of the NW = 10000 self-avoiding octopus ran-
dom walkers, all of them with p(3) = 0:125. Equation (4) and (5) give the same
possibilities for the rest of directions. Figure 2 gives the results of the probabilistic
distribution of NSi; this typical example shows that the number of steps may be
found in the range, NSmin · NSi · NSmax; for this particular case we have found
NSmin = 9 and NSmax = 1528, with a mean value of NSmean = 213:91.

Noteworthy are four facts:
a) the relatively high dispersion of the number of steps, if compared with the

mean;
b) NSmean is greater that the number of steps of maximum frequency, NSmax freq;
c) the condition that NSmean=NSmax freq ¼ 2; and
d) the distribution of probabilities is far from smooth, denoted by the presence

of peaks and valleys.
These properties are common to all frequency distributions of the number of steps

for any value of p(3) in the range 0 · p(3) · 0:25. Hemmer and Hemmer [4] show
a similar frequency distribution of NSi for p(3) = 0:25 (the cross walker). Their
results are NSmean = 70:7§0:2 and Dmean = 11:87§0:05, for NW = 60000 random
cross walkers; they found NSmax freq = 33, i.e., NSmean=NSmax freq ¼ 2:1. Our
numerical results for this particular case are NSmean = 70:93 and Dmean = 11:95,
with NSmax freq = 35, i.e., NSmean=NSmax freq ¼ 2:0. Except for small di®erences,
most likely due to the random nature of the phenomenon, both results may be
considered as equal.
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Figure 2 - Probability distribution of the number of steps,NSi, for i = 1, 2, 3, ... , NW ,
performed by NW = 10000 self-avoiding random walkers, resulting from a particular nu-
merical experiment in which the possibilities for choosing directions, set as initial conditions,
are: p(I) = 1=8, for I = 1 through 8. Note that some of the walkers are trapped with a few
steps, while others require nearly 1500 steps. Also notice that the probability distribution is
far from smooth. The mean value of steps, NSmean, for this case is 213.9, about twice the
number of steps of maximum frequency (107.5). Probability distributions similar to the one
herein shown are obtained when p(3) is varied according to the rules of Eqs. (4) and (5).

For the case of diagonal walkers, identi¯ed by p(3) = 0, we obviously found the
same value for NSmean, and Dmean = 11:95p2 = 16:90. This means that cross
walkers and diagonal walkers are the same type of self-avoiding walkers, except that
distances are multiplied by p2 for the latter.

Frequency distributions of mean distances, as de¯ned in Eq. (2), are similar to
the one just presented.

We now turn our attention to the in°uence of p(3) upon the mean number of steps
and mean distances, i.e., the functions NSmean = fNS [p(3)] and Dmean = fD[p(3)],
in ¯gures 3 and 4, respectively. Numerical results (represented with full circles)
correspond to a lattice of JF = KF = 800; this region may be considered as in¯nite
since no walker ever reached the boundaries.

We have just described the results at both ends of the functions, i.e., when
p(3) = 0 and p(3) = 0:25. When we are in the range 0 < p(3) < 0:25 (note
that inequalities are `smaller than', and not `smaller or equal than') the values of
NSmean as well as those of Dmean are greater than those corresponding to p(3) = 0
or p(3) = 0:25.
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This means that the octopus walker performs more steps and reaches longer
distances when 0 < p(3) < 0:25.

Figure 3. Mean number of steps, NSmean, as a function of p(3), for NW = 10000
random walkers. When p(3) is equal to 1=4 or zero, cross and diagonal walkers, respectively,
NSmean »= 71 steps. When p(3) is in the range 0 < p(3) < 1=4, NSmean increases when
p(3) decreases. The results corresponding to an `unrestricted' region, JF = KF = 800
cells along the horizontal and vertical, respectively, are shown with full circles; in these
cases none of the 10000 walkers has reached the frontiers of the region. When the region
is restricted, the mean number of steps decreases for a constant p(3); results are shown for
JF = KF = 100 (open circles), 50 (squares) and 25 (triangles); in these cases a torus-like
shape is given to the region and a periodic boundary condition is set. The decrease of
NSmean may be attributed to the premature trapping of the walkers when he invades its
own previous path. The same symbols for unrestricted or restricted regions are used in the
rest of ¯gure.

Figure 4. Same as in ¯gure 3, in this case dealing with mean distances Dmean; Di is
measured from the starting point of the random walk to its ¯nal position (where the octopus
walker is trapped.)
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The reason for this lies in the fact that he is able to cross its own path, thus
opening new regions where he can ramble. The octopus walker postpones its own
trapping. Neither cross walkers nor diagonal walkers are able to cross their paths.

It may be clearly seen that NSmean, as well as Dmean, increase when p(3) de-
creases.

With extremely low possibilities for the cross directions, namely p(3) = p(1) =
p(5) = p(7) = 0:000001, and extremely high possibilities along the four diagonals,
namely, p(2) = p(4) = p(6) = p(8) = 0:249999, we have an octopus walker with
almost all its possibilities along the diagonals and a few, insigni¯cant chances for
cross steps. The number of steps increase from NSmean = 70:93 (diagonal walker)
to NSmean = 568:44. Such small `perturbations' are su±cient to make an 8-fold
increase in the mean number of steps. Mean distances also increase, from Dmean =
16:91 to Dmean = 49:23, i.e., almost three times greater.

It should be noticed the large dispersion of the number of steps; for the previous
case of an octopus walker with small perturbations we found a maximum ofNSmax =
4877 and a minimum ofNSmin = 27; when the walker is purely in diagonal directions
the results were NSmax = 509 and NSmin = 7.

We may have an approximate relation between p(3) and mean values by means
of

NSmean »= 474:08 e¡6:518p(3) and Dmean »= 40:81 e¡4:350p(3) (6)

in the range 0:025 · p(3) · 0:249.
5.1 A measure of the di®usion of the octopus walker

The self-avoiding random walker we are dealing with struggles to ¯nd a free
site where he can step on and continue his walk; we may think of this e®ort as a
`di®usion'. Its measure, which could be based upon the ratio of the square of a
distance and the number of steps he made to reach this distance, is given by

º = 1
2
1
NW

NWX
i=1

D2i
NSi (7)

where D2i , from Eq. (2), is the squared displacement. If one step is assimilated to
a unit of time, this coe±cient has the dimensions of a kinematic viscosity in Fluid
Mechanics.

Figure 5 (full circles) shows the function º = fº [p(3)] for an unlimited space with
JF = KF = 800. It clearly shows the two-fold decrease in the coe±cient when p(3)
goes from 0 to 0.25. The octopus walker who has the greatest capacity to di®use
himself is a diagonal walker with small components (small as they may be) along the
cross directions. The walkers who have the smallest di®usion are the cross walkers,
i.e., the most widely used in the current literature.
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Figure 5. The ratio of a squared distance D2i and the number of steps NSi the octopus
walker needed to reach its ¯nal position may be used as a measure of how the walker
di®uses when he struggles to ¯nd a free site to step on. This ¯gure shows how the measure
of di®usion, º, given in Eq. (7), varies in the range 0 · p(3) · 1=4: º decreases when
p(3) increases in an otherwise unrestricted region. The opposite e®ect, i.e., º increases with
p(3), may be observed when the region allowed for the walker to ambulate is restricted.

5.2 Folding of the path of walkers
The visual aspect of the path of random walkers is in general a broken line in

which, most of the times, it is impossible to distinguish its origin and its end. In
order to have a measure of how twisted a path is, we may de¯ne an index of folding
by

Ifo = 1¡ 1
NW

NWX
i=1

Di
Di;s (8)

where Di is the distance from the origin to the end of the path, as mentioned above,
and Di;s is the `stretched distance', i.e., the sum of all steps of unit length and
those of length p2. Ifo = 0 means a walker without folding; this case is highly
improbable since his path is a straight line. Ifo = 1 is a case (impossible event due
to the condition of self-avoidance) in which there is a perfect or complete folding.

Figure 6 represents the numerical results for the function Ifo = f [p(3)]. They
show that, for a pure diagonal walker, with p(3) = 0; Ifo = 0:832; however, when p(3)
is slightly greater than zero, for instance p(3) = 0:005, the index of folding increases
to Ifo = 0:937. When p(3) increases towards 0.25, Ifo decreases smoothly to its
minimum, which corresponds to Ifo = 0:832 for p(3) = 0:25. The lowest folding
is for the pure diagonal and for pure cross walkers, while the highest folding come
from an octopus walker with most of its probabilities along the diagonal directions
and very low chances along the cross directions.
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Figure 6. The distance Di referred to the `stretched' distance Di;s (i.e., the sum of all
steps of unit length plus those of length p2), leads to the de¯nition of Ifo, a coe±cient
of folding given in Eq. (8); it measures how wrinkled the path of the walker is. This ¯gure
shows how Ifo varies with p(3).

Based upon probability distributions of the number of steps for walkers with and
without the condition of self-avoidance, Hemmer [8] has proposed

Ifo = 1¡
s

2
NSmean (9)

which ¯ts more than reasonably well with numerical experiments, even for the ex-
tremes of the curve at p(3) = 0 and p(3) = 0:25:

5.3 Entropy
The probabilities of the distances reached by each walker and the number of

steps they make to reach that distance can be used to compute their entropies. We
have analyzed how they behave with p(3) but they do not show signi¯cant variations.
Su±ce to say that entropies for the number of steps and for distances are almost
constant (of the order of 0.80 and 0.65, respectively). Though the study of chaoticity
goes beyond the scope of the present study, the existence of particular values of p(3)
with peaks of order and disorder can not be disregarded at the present moment.

5.4 Con¯nement of octopus walkers
It has already been pointed out that all octopus walkers as yet studied could

walk freely along an unlimited region, without ever reaching its boundaries; this
condition was satis¯ed with a plane composed of JF = KF = 800 cells. However,
some of the octopii may reach one of the four boundaries when the space is restricted
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and, therefore, due to the torus-like shape of the region, the octopus may invade
its own previous path. The limitation of space may cause his premature trapping.
This is clearly seen in ¯gure 3 with open triangles when the space is reduced to
JF = KF = 25. However, even with such a small place to walk around, the increase
of NSmin with the decrease of p(3) is still noticeable. A torus with JF = KF = 100
(open circles in ¯gure 3), much smaller than 800 (full circles), show almost the same
function NSmean = fNS [p(3)] .

Figure 4 shows the results of con¯nement for the function Dmean = fD[p(3)]; its
general behavior is similar to the one just seen, though the e®ects of reducing the
size of the region are more pronounced. In this respect, note that for JF = KF = 25,
Dmean is independent of p(3) and equal to about 9 units.

It was shown before in ¯gure 5 with full circles that º decreases when p(3)
increases from 0 to 0.25, when the octopus walker has an unlimited region to walk.
Open circles, squares and triangles in ¯gure 5 show the e®ect of con¯nement upon
º with the opposite behavior: di®usion increases when p(3) increases and when the
available space to roam is restricted.

Restriction of the area causes an increase in the index of folding, as shown in
¯gure 6.

5.5 The octopus walker without the condition of self-avoidance
This paper contains information, mainly aboutNSmean andDmean, of an octopus

walking until he is trapped in his own path. If we eliminate the condition of self-
avoidance, for the number of steps limited by Eq. (6), the distance reached, D¤mean,
is smaller than Dmean. An approximate value is D¤mean=Dmean ¼ 0:7 for the range
0:005 < p(3) < 0:25 .

The index of folding for octopus walkers without self-avoidance is slightly greater
(by a factor of 1.02) than those with self-avoidance in the vicinity of p(3) = 0; for
p(3) near 0.25 the factor increases to 1.05. For both ends of the curve, at p(3) = 0
and p(3) = 0:25, the factor is 1.08.

6 Conclusions
The behavior of random walkers which are not allowed to step on any site they

have previously visited (self-avoiding random walkers) are studied by means of the
number of steps they make before being trapped at some distance from the origin of
their walks. Mean values of the number of steps and distances show that there is a
wide variety of behaviors, depending upon the possibilities they have to choose one
from eight di®erent directions (octopus walkers). The common random walker has
only four possible orthogonal directions, each one with equal chances to be chosen;
under these circumstances he may last only 71 steps before being trapped. The
main property of octopus random walkers is that they may last much more than
that. With a suitable election of the eight possible directions it may take almost
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600 steps. If the octopus walker is allowed to ambulate over a torus-like surface, he
is prematurely trapped.
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