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Abstract: Each time a particle is added in order to study growth phenomena with a discrete
model, the mass of the object increases and its perimeter changes. This change of perimeter

may have different values and signs, depending on the place where the particle is added and

on the computational model used. We study these changes of perimeter, for the deposition

of particles on a two dimensional euclidean space, starting with a line of seeds and using

two types of lattices, one composed of square cells and another one in which the cells are

equilateral triangles. Functions relating perimeter, density and entropy with the area are

studied. Different types of random walks are considered in a particular fashion through

the selection of five different possible directions. The usual procedure to study the way the

perimeter of an object varies with its area is by means of the well known power-law function.

An alternative method is herein proposed to define a similar approach, but it is based upon

the probabilities of the changes of perimeter. No attempt has been made in this study to

compare numerical results with those of real phenomena.
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Resumo:Sempre que se acrescenta uma partícula para estudar fenômenos de crescimento, a
massa do objeto cresce e seu peŕimetro muda. Essa mudança de perímetro pode ter valores

de sinais diferentes, dependendo do lugar onde a partícula é adicionada e do modelo com-

putacional usado. Estudam-se essas mudanças de perímetro para deposições de partículas

num espaço euclidiano de dimensão 2, partindo de uma linha de sementes e usando dois

tipos de redes, uma composta de células quadradas e outra em que as células são triângulos

equiláteros. Estudam-se funções que relacionam peŕimetro, densidade e entropia com a

área. Diferentes tipos de percursos aleatórios são considerados de uma maneira particular

através de uma escolha de cinco possíveis direções diferentes. O processo usual para estudar

como o peŕimetro de um objeto varia com a sua área é pela bem conhecida lei da potência.

Propõe-se um método alternativo para definir um enfoque semelhante, porém baseado nas

probabilidades de mudança de peŕimetro. Não se faz nenhuma comparação numérica com

resultados associados aos fenômenos reais.

Palavras-chave: percursos aleatórios; agregação; agregação baĺıstica; dimensão fractal;

crescimento de objetos

1 Introduction

The study of growth phenomena has concentrated the attention of scientists in re-
cent years [1], both in theory and its applications. The results and conclusions from
models are giving answers to the complex behavior of some natural processes. Ac-
cording to Meakin [2,3], “One of the most important models which generates fractal
structures is the Witten-Sander model [4] for diffusion-limited aggregation”. From
this early contribution a wide variety of phenomena has been studied, for example,
purification of air and water [5-7], particles or atoms added to surfaces and fibers
[8-11], colloids and coagulated aerosols [12,13], chemical species precipitation from
supersaturated matrix and crystal growth from a superheated melt [14], formation of
dust, soot and dendrites, polymer gelation [15-18], percolation [19-25], critical phe-
nomena [26], sol-gel transition [27], early stages of nucleation [28], dendritic crystal
growth, the coagulation of smoke particles [29], red blood cell aggregation [30], di-
electric breakdown [31], fluid-fluid displacement in Hele-shaw cells and porous media
[32], electrodeposition [33,34], the formation of sputter-deposited thin films [33], bi-
ological processes, a variety of pattern formation processes and theoretical works
[31,35-56].

One of the models which appears to be the simplest (if only its rules and initial
conditions are contemplated), consists of a seed, or a line of seeds, implanted at
the bottom of a region; the growth process starts by releasing a particle from the
top of the region and, due to some force field, it falls down until it reaches a site
adjacent to a seed or to an already deposited particle; at this instant it is considered
a permanent part of the cluster. The process continues by throwing another particle.

The region where deposition takes place is herein composed of cells of two differ-
ent shapes: triangular and square cells. The study is performed taking into account
that, each time one cell is added, the area increases and the perimeter changes. Thus,
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variables are considered in a ‘microscopic’ fashion (the size of the cells) and an in-
stantaneous picture of deposition is obtained, allowing the study of local changes of
perimeter.

The first part of the present paper deals with the problem of pure vertical fall of
particles (ballistic deposition, where diffusion is absent); in the second part particles
perform a random walk (diffusion-controlled deposition).

2 Description of the numerical model and definitions

2.1 Square and triangular lattices

We shall perform numerical experiments of deposition on two different types of
lattices, one composed of square cells and another with equilateral triangles, as
shown in Figure 1(a) and 1(b), respectively. The sides of the squares and triangles
have a length equal to unity. Thus, the area of each square is equal to unity, while
the area of each triangle is

√
3/4.

The region where deposition takes place has a total of JF cells along the hori-
zontal (each cell defined by a J-index) and KF cells along the vertical (with K-index
identifying each row of cells). The region is assumed to be cylindrical in shape; thus,
a periodic boundary condition is set in the horizontal direction. For this reason the
vertical limits of the space have a zigzag course in the triangular lattice.

2.2 Definition of a density

Figure 1(a) shows an assumed example of deposition on a square lattice; column
J = 6 has 4 filled cells and 2 empty cells in between. The density ρJ of this
particular column shall be defined as

ρJ = ρ6 = 4/ (4 + 2) (1)

The empty cells are in the “shadow” of a filled one. If the procedure is extended to
all columns, then the density ρ of the object shall have the expression

ρ =
JFX
J=1

ρJ (2)

As an example, Figure 1(a) has 23 filled squares and 11 empty ones. The density
of objects generated on a triangular lattice is defined in a similar fashion. The
example of Figure 1(b) has 45 filled triangles and 16 empty ones in the shadow of
filled triangles. Notice that column J = 9 has 3 filled cells and an equal amount of
empty triangles, while column J = 14 has no empty triangles in the shadow of filled
ones.

Clusters generated by deposition contain empty channels (fiords), opened to the
exterior, and porous regions trapped by filled cells. A better definition of density
should contain this information, but its programming on a computer seems to be
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rather involved for the moment specially due to computer memory limitations. The
previous definition of density, however, provides good information in all of our ob-
jects and is very simple to calculate.

The numerical model herein used calculates the maximum height reached by the
object each time a new particle is deposited, but it was found that this variable
does not add important information about the behavior or deposition. If a mean
maximum height is considered of import, it may be easily computed from the results
herein presented, with the product of the density multiplied by the area and divided
by JF .

2.3 Changes of area and perimeter

Each time a particle finds an empty site, for any type of growth model (diffusion-
limited aggregation, model of Eden, ballistic deposition, etc.), the area of the object
changes with an amount given by

∆A = An+1 −An (3)

when one particle is aggregated; in the above equation, An and An+1 are, respec-
tively, the areas before and after the aggregation of one particle takes place. The
quantity ∆A shall always be considered positive, i.e., the cell is permanently incor-
porated into the cluster.

Accordingly, each time the area increases with ∆A, then the perimeter changes
as

∆P = Pn+1 − Pn (4)

where Pn and Pn+1 are, respectively, the perimeters before and after one particle
has been aggregated.

For the square lattice of Figure 1(a), ∆P may have only 5 different values:
∆P = +4 belongs to a particle added to the vertex of an already existing particle;
∆P = +2 comes from the addition of a cell to the side of another filled cell; ∆P = 0
is the result of particles aggregated at the empty corner formed by two previously
added particles; ∆P = −2 pertains to a cell deposited at the slot formed by 3 already
deposited cells; and finally, ∆P = −4 shall be the result of a particle added to a site
surrounded by 4 filled cells. Examples of all possible events are annotated in Figure
1 (a). It should be noticed that a lattice composed of hexagons has the same values
for the changes of perimeter mentioned in the paragraph above.

The possibilities of ∆P for the triangular lattice, if compared with the square
lattice, are reduced from 5 to 4, and have the following values: ∆P = +3 is produced
when a triangle is deposited at the vertex of a filled triangle; ∆P = +1 comes from
the event that a cell is attached to the side of a previously filled cell; ∆P = −1 is
the result of a triangle added at the wedge between two filled triangles; and finally,
∆P = −3 comes from the occupation of a free site trapped between 3 filled triangles.
All these cases are shown in Figure 1 (b).
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Figure 1. Two examples of small clusters generated by deposition, (a) with a lattice com-

posed of square cells and (b) with triangular cells. Both types of cells have their sides equal

to unit; thus, the area, ∆A, of each square is equal to unity, while that of the triangle is√
3/4. Deposition takes place in a region composed of JF cells in the horizontal and KF

cells in the vertical direction. There is a line of seeds placed at the bottom of the region in

order to start the growth of the object. Each time the area increases with ∆A the perimeter
changes with ∆P . The different changes of perimeter (∆Pk), for each lattice, are indicated
with numbers in the empty cell it would occupy if allowed to be deposited there. For the

triangular lattice there are only four possible changes of perimeter, while for the square

lattice there are five.

If the possibilities of ∆P = +4 for the square lattice, or ∆P = +3 for the
triangular lattice, are set to zero as an initial condition, it means that the growth
model does not allow particles to be deposited at the vertex of already existing sites.
This criteria reduce the number of variables (degrees of freedom) participating in
the problem.

2.4 Probabilities of the changes of perimeter

If the changes of perimeter are recorded each time a particle is deposited, then a
statistical study of the probabilities, p(∆Pk), may be performed; they are given by

p(∆Pk) =
nk
nf

(5)
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where nk is the number of cases found with a given ∆Pk, and nf is the total amount
of particles added. Probabilities

{p(∆Pk)}∆Pk=−4,−2, 0,+2,+4 (6)

{p(∆Pk)}∆Pk=−3,−1,+1,+3 (7)

for the square and triangular lattices, respectively, give good information about the
available sites where a cell may be deposited as the object grows. In the following
paragraphs it shall be seen that they may also be of interest in the study of the
behavior of all growth phenomena.

2.5 Information entropy

Let us consider a manifold P provided with a normalized measured p. Let ∆P =
{∆Pı}i=1,...,n ⊂ P ; then we can define an entropy [57] of the set ∆P as

S(∆P ) = −
nX
i=1

p(∆Pı) ln (p(∆Pı)) (8)

where ∆P is the set of all possible changes of the perimeter, and the measured p is
the probability associated with these changes. The above values of the probabilities
of the different types of changes of perimeter may be used to compute the informa-
tion entropy of the system, relative to the maximum disorder (given by kf possible
events), by means of

S =

kfX
k=1

p(∆Pk) ln (p(∆Pk))

ln(1/kf )
(9)

with kf = 5, for the square, and kf = 4 for the triangular lattice, respectively. The
value of kf may be smaller if a particular ∆Pk is initially set to zero.

2.6 Anisotropic random walk

In the general case of deposition a particle starts its way from the upper part of the
lattice and falls down, performing a random walk; the intention of the particle is to
reach a cell which is empty and in the vicinity of an already filled cell. The random
walk is herein performed by the choice of one of the 5 different possibilities:

D(I) for I = 1 to 5 (10)

defined in Figure 2, with the condition

5X
I=1

D(I) = 1 (11)
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Figure 2. The definition of the random walker used in this paper to grow objects; it may

select one from the five different directions, D(I), for I = 1 to 5. The sum of all these

possibilities is equal to unity. If D(3) = 1, then the direction of fall is always along
the vertical; if any of the other possible directions D(I) is different from zero the random

walker shall perform lateral steps. In the present paper we shall consider symmetrical objects

only; this is achieved by setting the initial conditions: D(1) = D(5) and D(2) = D(4).
Otherwise, the columnar structure of the object shall be inclined with respect to the vertical.

Directions D(1), D(2) and D(3) have a resultant Rl inclined with an angle αl to the left;
similarly, D(3), D(4) and D(5), inclined to the right. Due to the conditions of symmetry,
the different types of random walks may be characterized by a modulus of intrusion (R)
and by an angle of diffusion (α).

If a particle is in position (J,K) in the lattice and the choice is direction D(1),
then it shall occupy the cell identified by (J − 1,K); if the chosen direction is D(2)
it shall fall in the position (J − 1,K − 1); if it performs a vertical down step with
the possibility D(3) the name of the cell shall be (J,K−1); if the possibility D(4) is
randomly chosen the walker shall go to position (J +1,K − 1); and finally, if a step
to the right is chosen by means of D(5) the walker shall reach the cell (J + 1,K).
An initial condition given by D(3) = 1 shall result in a pure vertical fall of particles;
the condition D(1) = D(5) = 0.5 is avoided since it does not allow particles to make
a single step downwards.

The initial conditions

D(1) = D(5) and D(2) = D(4) (12)

shall produce a symmetrical object; otherwise, the columnar structure of the object
shall be inclined with respect to the vertical; see for instance [1], page 155.

A random walk defined as in Figure 2 has 4 independent variables; in order to
treat the walker in a simpler fashion we shall assume that D(1),D(2) and D(3) are
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“vectors”, the resultant of which have an argument αl and a modulus Rl, to the left
of the vertical; similarly, the resultant of D(3),D(4) and D(5) have an argument αr
and a modulus Rr, to the right. The previous conditions of symmetry in Eq.(2.12)
are replaced by

α = αl = αr and R = Rl = Rr (13)

Thus, a random walk resulting in a symmetrical object shall be defined by 2 variables
only: and “angle of diffusion” (α) and a “modulus of intrusion” (R).

For a given pair, (R,α), and for a symmetrical object, the possibilities D(I) of
a random walk are given through the solution of the system of equations

2D(1) + 2D(2) +D(3) = 1 (14)

D(1) +

√
2

2
D(2) = R sinα (15)

√
2

2
D(2) +D(3) = R cosα (16)

For a given α the modulus of intrusion varies in the range

Rmin ≤ R ≤ Rmax (17)

where

Rmin =
1

2 sinα+ cosα
, for 0 ≤ α ≤ π

2
(18)

The maximum modulus of intrusion is given by

Rmax =
1

(2
√
2− 1) sinα+ cosα , for 0 ≤ α ≤ π

4
(19)

and by

Rmax =
1

2 sinα+ 2(
√
2− 1) cosα , for

π

4
≤ α ≤ π

2
(20)

A pure vertical fall is given by Rmin = Rmax = 1 and α = 0. For any other angle of
diffusion (α > 0), there shall be a difference between Rmax and Rmin.

The maximum difference between Rmax and Rmin corresponds to α = π/4. In
this case, Rmax = 0.5 with D(1) = D(5) = D(3) = 0 and D(2) = D(4) = 0.5.
The minimum value of the modulus of intrusion is Rmin = 0.471406, with D(1) =
D(5) = D(3) = 1/3 and D(2) = D(4) = 0. This maximum difference, Rmax−Rmin =
0.5 − 0.47 = 0.03, seems to be rather small, but it shall be seen that the different
types of random walks play a very important role upon densities, entropies, changes
of perimeter and probabilities of changes of perimeter. It seems to the authors that
all numerical models of growth phenomena worked out in the past have considered
D(I) = 1/5, for I = 1 to 5, and some of them, perhaps, with D(I) = 1/8, for I = 1
to 8.
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2.7 How and when a particle is deposited

At a certain stage (n) of growth, the particle which is to be deposited at n+1 starts its
random walk at a horizontal position chosen at random between J = 1 and J = JF ,
and at vertical position (K-index) which is 5 cells above the highest reached during
stage n. The particle starts its random walk following the prescriptions given by
the 5 possible directions described in Figure 2. If the particle reaches an empty cell
and has an adjacent filled cell the program makes a halt. It computes the change of
perimeter ∆P would the particle be deposited in the empty cell. If the change of
perimeter is allowed then the particle is considered to be permanently deposited in
the empty site. If ∆P is not allowed the particle is “killed” and a new random walk
starts in the manner previously described.

We shall only consider symmetrical objects in the present study. Thus, random
walks are restricted to the conditions given by Eqs.(2.12) or (2.13). In order to start
deposition, a line of seeds is placed at the bottom of the region, i.e., at K = 1, from
J = 1 to J = JF . No particles are allowed to be deposited at the vertices of already
existing particles. In consequence, the only possibilities of changes of perimeter shall
be

p(−2), p(0) and p(+2) (21)

for the square lattice, and

p(−3), p(−1) and p(+1) (22)

for the triangular lattice. Then, kf = 3 in Eq. (2.9).

3 A new approach for the study of growth phenomena

The usual procedure to study fractal [58] growth phenomena is by means of the well
known power-law function

A = ff P
D (23)

which relates the area of the object and its perimeter by means of a form factor (ff )
and the fractal dimension (D).

Let us assume we have performed an experiment of deposition (or aggregation)
in which the measures, p(∆Pk), are available [59]. We define the mapping by

An+1 = An +∆A (24)

Pn+1 = Pn + h∆P iAn (25)

where

h∆P iAn =
Z
P

∆P p (∆P,An) d∆P (26)

and p (∆P,An) is the evolution of p (∆P ) with respect to the area at iteration n.
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For the case of numerical models of growth in which there is a finite number (kf )
of increments of perimeter, then the expectation value is

h∆P iAn =
kfX
k=1

∆Pk p (∆Pk) (27)

Rewriting Eqs. (3.2) and (3.3) as:

δA = ∆A (28)

δP = h∆P iAn (29)

we can define the incremental form for the evolution of the system by

δP

δA
=
h∆P iA
∆A

(30)

Integrating over all the range of variation of A, we find that

P − Pı = 1

∆A

AZ
Aı

h∆P iA δA (31)

We can see from Eq. (3.9) that the perimeter is a function of the area, i.e., it
is an inverse form of Eq. (3.1). This behavior comes from the dependence of the
probabilities on the area. A trivial case occurs when the probabilities are constant,
i.e., h∆P iA = h∆P i ; then

P =
h∆P i
∆A

A (32)

This simple example shows that the fractal dimension, when the probabilities
remain unchanged, is equal to unity; furthermore, it is found that the form factor
has the new meaning

ff =
∆A

h∆P i (33)

A non-trivial dependence of the perimeter on the area, for an object generated
with any growth model, may be obtained by assuming that the quantities p (∆Pk)
are given by functions of the type

p (∆Pk, A) = pı (∆Pk) + g (∆Pk) A (34)

The gradients are expressed by

g (∆Pk) = [pf (∆Pk)− pı(∆Pk)]/(Af −Aı) (35)

where pı(∆Pk) are initial probabilities, and pf (∆Pk) are final probabilities, when
the areas are Aı and Af , respectively.
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If we define

K1 =
1

∆A

kfX
k=1

∆Pk p (∆Pk) (36)

and

K2 =
1

2∆A

kfX
k=1

∆Pk g (∆Pk) (37)

then

P = Pı +K1(A−Aı) +K2(A2 −A2ı ) (38)

In other words, the previous equation expresses the important fact that, when the
probabilities of changes of perimeter do not change with the area, then the perimeter
varies linearly with the area. When the probabilities of changes of perimeter vary
linearly with the area, then the perimeter varies with the second power of the area.
We shall return to these matters on later chapters.

In order to see if the theoretical solution given by Eq. (3.16) satisfies the al-
gorithm expressed by Eqs. (3.2) and (3.3), if the increments of perimeter ∆P are
given by an expression of the type of Eq. (3.12), a very simple numerical model
may be developed. The results are quite satisfactory, provided the number of steps
of integration (number of increments ∆A) are of the order of 100000. Several types
of probabilities were tested for Eq. (3.12), even an oscillatory one; in this particular
case, if the frequencies of oscillation are relatively high, the number of steps should
exceed 500000.

In brief, for a function Y = f(X) generated with ∆Y = constant and with ∆X
chosen at random, a theoretical solution is derived, and this solution reproduces the
function surprisingly well.

4 Experimental results

4.1 Numerical experiments with vertical fall of particles

A large number of numerical experiments were performed, each one with an object
sufficiently large to yield significant results and, at the same time, small enough to
be compatible with our computing facilities. There was a first group of experiments
with the square lattice and a second one with the triangular lattice, both for a pure
vertical fall of particles. Due to the disposition of cells, the width of the object for
the square lattice is W = JF , while that of the triangular lattice is W = JF/2+0.5.

Three different lines of seeds (number of cells placed at the bottom of the region)
were studied, namely, JF = 100, 500 and 1000. Clusters were generated with a
maximum area, Amax, of the order of 141000, 704000 and 1404000, respectively,
for the square lattice. The maximum area was of the order of 81200, 403400 and
806300, respectively, for triangles. Deposition continued until the object reached an
approximate maximum height of 2000 units.
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For each JF , 30 different objects were generated, each one with different series of
random number. (The random number generator comes from a subroutine developed
by D. Carpintero [60]). The following variables were recorded: area, perimeter,
maximum height, density, entropy, p(∆Pk), and the two constants of the power-law
function of Eq. (3.1).

All variables studied (and their standard deviations) indicate that at the begin-
ning of growth there is a short transient state with a relatively large dispersion of
results, but very soon, when the area increases, this dispersion is strongly attenuated.

Let us consider, as an example, objects with JF = 100, treated with a square
lattice. When the area is very small, between the limits 8000 ≤ A ≤ 16000, the mean
density (of the 30 different numerical experiments) is ρ = 0.48769 with a standard
deviation of ±0.00081; with a larger size, for 64000 ≤ A ≤ 72000, the mean density
is ρ = 0.47641±0.00004; at the end of the experiments, when the cluster are largest,
with 118000 ≤ A ≤ 136000, the mean density is ρ = 0.47476 ± 0.00001, similar to
the previous one.

It has been observed, through 30 numerical experiments, each with a different
series of random numbers, each for three different lines of seeds at the bottom,
(JF = 100, 500 and 1000), and all of them for both a square and a triangular lattice,
that densities, entropies and probabilities of the different changes of perimeter are
nearly the same if they are measured at the maximum area, Amax, or at half of it,
Amax/2. This assures that the transient state has ended when the variables of the
present paper are studied, at Amax.

Let us concentrate our attention now on the final probabilities of the different
changes of perimeter, p(∆Pk), when the area is Amax. Numerical results, shown in
Table 1, clearly indicate that they are independent of the width, JF , of the object,
for both types of lattices.

Probabilities p(+2) with ∆P = +2 for squares, and probabilities p(+1) with
∆P = +1 for triangles, are by far the highest of all possible changes of perimeter.
This means that the object generated by deposition offers many places at the sides
of already existing cells. Probabilities p(0) and p(−1), for squares and triangles,
respectively, are smaller than the previous ones; the smallest probabilities are p(−2)
and p(−3), for squares and triangles, respectively. It may be seen that, for the
square lattice

p(+2)/p(0) = 4.7 and p(+2)/p(−2) = 37
while for the triangular lattice

p(+1)/p(−1) = 5.3 and p(+1)/p(−3) = 210

It should be pointed out that these results belong to a pure vertical fall of
particles; for other types of random walks, p(−2) and p(−3) may become negligible,
or zero. This conclusion may be of interest for a theoretical study of deposition.

If we use the subscript ‘t’ for the triangular lattice and ‘s’ for the square one,
the ratio of densities is ρt/ρs = 1.324, for JF = 100, 500 and 1000. One interesting
conclusion from these results is that the densities of objects studied with a triangular
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lattice are always greater than those for the square, and that they are independent
of the form of the region of deposition (very narrow or wide).

Square Lattice Triangular Lattice

JF = 100

p(−2) = 0.02166 p(−3) = 0.00387
p(0) = 0.17121 p(−1) = 0.15804
p(+2) = 0.80710 p(+1) = 0.83809

JF = 500

p(−2) = 0.02187 p(−3) = 0.00396
p(0) = 0.17330 p(−1) = 0.15900
p(+2) = 0.80679 p(+1) = 0.83704

JF = 1000

p(−2) = 0.02191 p(−3) = 0.00398
p(0) = 0.17158 p(−1) = 0.15918
p(+2) = 0.80651 p(+1) = 0.83684

Table 1: Probabilities (p(∆Pk)) of the different changes of perimeter (∆Pk), for different
amounts of particles (JF ), placed at the bottom of the region as seeds, in order to start

deposition. With the initial restriction that no particles are allowed to be added at the

vertices of already deposited particles, the probabilities for the square lattice are p(−2),
p(0) and p(+2), while for the triangular lattice they are p(−3), p(−1) and p(+1). It may
be seen that an increase in JF does not change the probabilities p(∆Pk) in a significant
fashion.

The area of a square circumscribed in a circle is Asq; the area of an hexagon
composed of six equilateral triangles and circumscribed in the same circle is Ahex.
The ratio of both areas is Ahex/Asq = 2.25/

√
3 = 1.299. The similitude between

1.32 and 1.30 does not seen to be just a mere coincidence.

If we turn our attention to entropies S, with both triangular (subscript ‘t’) and
square lattices (subscript ‘s’), for JF = 100, 500 and 1000, we see that the former
is lower than the latter, and that the ratio, St/Ss = 0.828, remains approximately
constant, also no matter how narrow or how wide the region is. Deposition of
triangles leads to objects with more order than those made of squares.

In order to compute the form factor (ff ) and the fractal dimension (D) of Eq.
(3.1), areas were considered in different ranges, in order to see the influence of the
transient state of deposition. A brief summary of results is in Table 2.
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Triangular lattice

JF Range of areas ff D

100 20000 ≤ A ≤ 81017 0.6535 0.9992

100 70000 ≤ A ≤ 81017 0.6439 1.0000

500 200000 ≤ A ≤ 403351 0.6556 0.9994

500 300000 ≤ A ≤ 403351 0.6524 0.9997

1000 400000 ≤ A ≤ 806270 0.6636 0.9986

1000 600000 ≤ A ≤ 806270 0.6625 0.9987

Square lattice

JF Range of areas ff D

100 72000 ≤ A ≤ 141000 0.6457 0.9989

100 128000 ≤ A ≤ 141000 0.6557 0.9976

500 350000 ≤ A ≤ 704000 0.6476 0.9988

500 600000 ≤ A ≤ 704000 0.6465 0.9990

1000 700000 ≤ A ≤ 1404000 0.6437 0.9993

1000 1200000 ≤ A ≤ 1404000 0.6384 0.9999

Table 2: From the results of numerical experiments for the area A and the perimeter P of

ballistic objects, for different sizes JF and for the two types of lattices herein studied, the
form factor (ff ) and the fractal dimension (D), for the power-law function A = ffP

D has

been determined by a least-square method. The computations are performed for different

ranges of the area in order to show that a stable growth has been reached. It may be

appreciated that the fractal dimension is very close to unity. See the contents of the text for

a new interpretation of the form factor relating it with the sum of products ∆Pk p(∆Pk).

4.2 The form factor seen from two points of view

In Table 2, for the triangular lattice (with ∆A =
√
3/4), for JF = 100, 500 and 1000,

and for the highest ranges of areas, the form factors ff obtained were

0.6439, 0.6524 and 0.6625

respectively. From Eqs. (3.5) and (3.11), the form factor is

ff =
∆A

[−3p(−3)− p(−1) + p(+1)] (39)

If the results of Table 1 are used with the previous equation, the following form
factors are obtained:

0.6478, 0.6500 and 0.6504
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If the results for the square lattice, also in Table 2, (with∆A = 1), are compared
in the same fashion, it may be seen that for the least-square curve fitting the form
factors are given by

0.6557, 0.6465 and 0.6384

while from Table 1 and with the new method of the probabilities of changes of
perimeter, using

ff =
∆A

[−2p(−2) + 2p(+2)] (40)

the results of numerical experiments yield

0.6366, 0.6370 and 0.6373

The comparison of results seems to be reasonable good, if it is taken into account
that they come from two entirely different methods. One of the methods (Table 2)
comes from the classical curve fitting of the area as a function of the perimeter. The
other comes from the theoretical results of Eqs. (3.5) and (3.11).

The form factor was generally regarded as a variable which supposedly reflected
the form of the object. However, the results of the present paper suggest that it
should be considered as an indication of the behavior of a new variable, namely,
the sum of the products of the changes of perimeter multiplied by their respective
probabilities, i.e. the sum of ∆Pk p(∆Pk), the expectation value.

4.3 Non-vertical fall of particles

When particles fall with a pure vertical direction, i.e., when D(3) = 1 or α = 0,
there is no possibility for a particle to be deposited below an already added cell, for a
particular column. This means that no particle shall be incorporated in the shadow
(columnwise) of another one. When the random walker is allowed to make lateral
steps (α > 0) some particles may reach the interior of the object. Nevertheless,
the total amount of particles added inside the object is overwhelmingly small, if
compared with the total number of cells added, and it increases with α and R. For
instance, for α = 450 and R = Rmin = 0.4714 one numerical experiment showed that
23 cells found an available site below a higher cell in the same column, when the
object contained 117000 cells; the intruders are a small fraction of the total area,
namely, 0.02 %. Another experiment, for α = 850 and R = Rmin = 0.4809, showed
that there were 363 particles, out of a total of 59000, (0.6 %) added in the inside of
different columns. Similar results were repeated in several experiments, and, though
isolated examples, they show that the vast majority of particles reach the ‘surface’ of
the object (the highest cell for each column). Particles incorporated into the interior
of the object are rare, even for angles of diffusion very close to π/2.

The highest densities and entropies are obtained when particles fall vertically.
When the chances of a lateral step for the falling particles are different from zero
the object decreases its density and its entropy. In order to show this phenomenon a
series of numerical experiments were performed with triangular and square lattices,
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and for angles of diffusion ranging from α = 0 up to α = 84o, with increments of
2o; three values of the modulus of intrusion were chosen: R = Rmin, R = Rmed =
(Rmin+Rmax)/2 and R = Rmax;the dimensions of the lattices were JF = KF = 500.
The total of 258 experiments are shown in Figure 3. The results near the maximum
densities and entropies are those for the smallest angles of diffusion; those far from
these maxima correspond to angles approaching π/2.

Figure 3. Entropy as a function of density for the square lattice (upper group of results)

and triangular lattice (lower group). The numerical experiments start with α = 0o and
R = 1, which is equivalent to say that D(3) = 1 and D(1) = D(2) = D(4) = D(5) = 0.
These random walkers yield maximum density and maximum entropy. The rest of results

are obtained in the range 0o < α ≤ 84o, increasing the angle by 2o. For each angle, three
different modulus of intrusion are used: R = Rmin, R = Rmed = (Rmin + Rmax)/2 and
R = Rmax.

Those values of the highest α, which are responsible for the lowest densities,
should be taken with caution; many more experiments, with the same initial con-
ditions but with different series of random numbers and much larger sizes of the
lattices, should have been performed. These experiments are too costly for the au-
thors at the present moment due to limitations in computer facilities. However,
it may be clearly seen that there are objects with constant entropy and different
densities, and that these differences of densities increase when the angle of diffusion
increases. When the objects behave in a more orderly fashion (low entropies) they
exhibit a wider variety of densities. The other point of view is obviously true: a
constant density may result in objects with different indices of chaoticity. Through
the observation of experimental results it is found that the lowest densities (ρmin)
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and entropies (Smin) result from the minimum modulus of intrusion (Rmin); the
maximum densities (ρmax) and entropies (Smax) are due to the maximum modulus
(Rmax). This fact is not clear from Figure 3. In order to emphasize this phenom-
enon a series of numerical experiments were performed with triangular and square
lattices, and for angles of diffusion α = 10o, 45o and 85o;the modulus of intrusion
varied between Rmin and Rmax according with Eqs. (2.18), (2.19) and (2.20).The
region where deposition takes place has the dimensions: JF = KF = 500.

Figure 4. Density as a function of the modulus of intrusion, for the range Rmin ≤ Rmax,
for triangular and square lattices, with an angle of diffusion α = 45o. The purpose of this
figure is to show the increase of density due to an increase of the modulus of intrusion. For

R = Rmin, then D(1) = D(3) = D(5) = 1/3 and D(2) = D(4) = 0; for R = Rmax,
then D(2) = D(4) = 1/2 and D(1) = D(3) = D(5) = 0.

The changes of densities due to changes of the modulus of intrusion are shown
in Figure 4, for an angle of diffusion α = 45o, for squares and triangles. Now it is
evident that there is an increase of density, ∆ρ = ρmax − ρmin when the modulus
increases from Rmin to Rmax; ∆ρ = 0.587− 0.485 = 0.102 for the triangular lattice,
and ∆ρ = 0.413 − 0.314 = 0.099 for squares. Concerning entropies, shown in
Figure 5, the objects herein studied follow the same behavior: ∆S = Smax−Smin =
0.360− 0.239 = 0.121 for triangles and ∆S = 0.407− 0.320 = 0.087 for squares.
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Figure 5. Same as in Figure 4, but dealing with entropies.

The largest differences ∆ρ and ∆S due to intrusion are observed for the afore-
mentioned α = 45o. For α = 10o and α = 85o, not shown in this paper, the differences
are much less accentuated.

4.4 More on the random walker and other topics

The random walker of subsection 2.6 can be made to vary with space and with time.
In order to show how versatile the manner in which the random walker is herein
defined, we shall present two examples of deposition (see Figures 6 and 7). There is
a random walker, # 1, which may choose any of the 5 possible directions; it is given
by D(I) = 1/5, for I = 1 to 5. There is another random walker, #2, which has the
following properties: D(1) = D(5) = 0.45, D(2) = D(4) = 0.05, and D(3) = 0; this
second walker may perform most of its steps, 90%, in the two horizontal directions,
and a few downwards and inclined steps. From what we have hitherto seen, it may
be expected that random walker #1 shall produce a dense object, while random
walker #2 shall produce an object with a columnar structure of lower density. For
both figures the lattices are composed of square cells, and the region of deposition
has JF = 1000 units wide; the height isKF = 1000 units for Figure 6 andKF = 1800
for Figure 7.
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Figure 6. An object generated through deposition of particles by two different random

walkers. The high density lower and upper layers are the result of random walker #1,
with the possibilities given by D(I) = 1/5, for I = 1 to 5; the low density middle layer
comes from random walker #2, with more chances to choose lateral steps: D(1) = D(5) =
0.45, D(2) = D(4) = 0.05, and D(3) = 0. The region of deposition is 1000 units wide
by 1000 units high. See Figure 7 for comparison.

Figure 7. The same two walkers of Figure 6, but now random walker #1 acts on the
vertical middle strip, while random walker #2 grows the object in the lateral strips. The
region of deposition is 1000 units wide and 1800 units high. Though this object is quite

different from the one of Figure 6, they have the same function relating areas and perimeters:

A = 0.579P . The function is linear because the probabilities of changes of perimeter do
not change with the area (in our case a measure of time); the slope of the function is the

same because the probabilities of changes of perimeter are equal for both objects.
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Figure 6 shows the result of the action of walker #1 when the height, H, of the
object is in the ranges, 1 ≤ H ≤ KF /4 and 3KF./4 ≤ H ≤ KF , while walker #2
grows the object in the range KF/4 < H < 3KF /4. The high density upper and
lower layers due to walker #1, and the low density middle layer due to hesitating
walker #2, with its columnar structure, are clearly seen. The object has a maximum
area, Amax = 249124 units. Probabilities of changes of perimeter remain constant
in the range, Amax/4 ≤ A ≤ Amax, with the following values: p(−2) = 0.00688,
p(0) = 0.12252 and p(+2) = 0.87060. From Eqs. (3.5) and (3.11), or Eq. (4.2), the
slope of the linear function, A = ffP, is given by

ff =
∆A

[−2p(−2) + 2p(+2)] =
1

[−2× 0.00688 + 2× 0.87060] = 0.57889

The entropy of the object is S = 0.3752.

We now turn our attention to the object shown in Figure 7, generated by the same
two walkers, but now they act in two different vertical regions instead of horizontal
layers. Walker #1 deposits particles when the J column ( the column where the
walk starts, chosen at random), is in the middle range, JF/3 < J < 2JF /3; walker
#2 has the lateral ranges of action, 1 < J ≤ JF /3 and 2 JF/3 ≤ J ≤ JF . The
final number of particles is Amax = 309854; for the range of areas, Amax/4 ≤ A ≤
Amax, the probabilities of changes of perimeter are similar to the previous example:
p(−2) = 0.00776, p(0) = 0.12098 and p(+2) = 0.87126; in consequence, the slope of
the function is also similar

ff =
1

[−2× 0.00776 + 2× 0.87126] = 0.57904

This particular object shows that the columnar structure due to walker #2 casts
a shadow over the region where walker #1 is acting, thus confining the region of
high density. The entropy of this object is similar to the one of Figure 6: S = 0.3762.

Though the form of the objects shown in Figures 6 and 7 are quite different, the
so called form factor, a name which seems to be misleading, is the same for both
examples, i.e., areas and perimeters are governed by the same linear function. The
slope of this function contains variables coming from the changes of perimeter and
their respective probabilities.

The methods used in this paper have also been applied to other growth processes,
such as diffusion-limited aggregation, with and without space and time variations
of the random walker; the results seem to be encouraging. Nevertheless, the study
of the Model of Eden, as the current literature shows, appears to be a special case,
perhaps due to an endless transient state and, also, due to its high density; large
areas and relatively low perimeters make the Model of Eden strongly dependent on
randomness. The results of numerical experiments with multiple random walkers,
and on other growth phenomena, are not herein presented because they go beyond
the scope of this paper.
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5 Conclusions

Deposition of particles depends on the probabilities of changes of perimeter each
time a new particle is added to the cluster, and on the possibilities of a walker to
perform random steps in explicit directions.

The function relating the area and its perimeter, for these objects with small
areas and large perimeters (low densities), is linear. This property is due to the
constancy of the probabilities of changes of perimeter. By theoretical means it is
shown that the slope of the function depends on the sum of the products of the
changes of perimeter by their respective probabilities.

Objects generated on a lattice composed of square cells are less dense and behave
in a more disorderly fashion (higher entropy) than those generated with triangular
cells.

There is a rather wide range of objects, produced with different types of random
walkers, which result in a constant entropy and different densities.
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