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Abstract: In this article, the normal derivative of the normal component of the macroscopic
electrostatic field near the surface of a curved conductor is obtained employing a differential

geometric approach.
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Resumo: Empregando-se métodos da geometria diferencial, obtém-se a derivada normal da
componente normal do campo eletrostático macroscópico nas proximidades de um condutor

de superf́ıcie não plana.
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The general problem of the distribution of charge on the surface of a curved
conductor in static electric equilibrium has received some attention during the past
two decades [1, 2]. Because the charge density is proportional to the normal com-
ponent of the electric field, a formula relating the normal derivative of the normal
component of the electric field near the conductor to its mean curvature appears to
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be of interest. There is a classical formula for the rate at which the magnitude of
the static electric field decreases with distance away from the surface of a conductor
and is given in standard electromagnetism texts [3, 4]
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where R1,R2 are the two principal radii of curvature of the surface at the point in
question. A proof of equation (1) employing a power series expansion has been part
of the literature for the past decade [5]. Employing differential geometry we show
in this article that the formula for the normal derivative of the normal component
of the electric field is given by the expression
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We begin our discussion by taking a point P on an equipotential surface just
outside the conductor as the origin of our coordinate system, and orienting the z
axis along the outward normal to the equipotential. Since the electrostatic potential
Φ(x, y, z) on the conductor is a constant, the equipotential passing through the origin
may be regarded as the conductor surface itself. Furthermore, the value of Φ for the
conductor surface may be taken to be zero without loss of generality. At the origin
P we thus have

Ez(P ) = −∂Φ
∂z

= −Φz(P ),
Ex(P ) = −Φx(P ) = 0, (3)

Ey(P ) = −Φy(P ) = 0

We now calculate the mean curvature K of the equipotential Φ(x, y, z) = 0 at the
origin P . The expression for the mean curvature K is, from differential geometry [6]

K =
1
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In equation (4) the quantities E, F and G are the coefficients of the first funda-
mental form whereas L, M and N are the corresponding coefficients of the second
fundamental form [6]. Assume now that the surface is described by the parametric
equation r(u, v), where r is the radius vector; with the convention that the convex
surfaces have a positive curvature, then

L = −ruu · bn, M = −ruv · bn N = −rvv · bn,
E = ru · ru, F = ru · rv , G = rv · rv (5)

where bn is the outer unit normal vector:
bn = ru × rv

|ru × rv| (6)
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With Φ(x, y, z) = 0 and solving for z = f(x, y) we obtain the parametric repre-
sentation for the surface Φ(x, y, z) = 0:

r (x, y) = x i+ y j+ f (x, y)k (7)

where x and y play respectively the roles of the parameters u and v. We can thus
write

rx = i+ fx k, ry = j+ fy k (8)

rxx = fxx k rxy = fxy k ryy = fyy k (9)

As can readily verified, the several partial derivatives of f(x, y) expressed in
terms of the derivatives Φ(x, y, z) are:

fx = −∂Φ/∂x
∂Φ/∂z

= −Φx
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From equations (5)-(11) we obtain for the fundamental forms coefficients at the point
P , where equation (3) holds true, the following simple expressions:

L = −fxx = Φxx
Φz
, N = −fyy = Φyy

Φz
, M =

Φxy
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(12)

E = G = 1, F = 0 (13)

Equation (4) develops then into
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In charge-free space the function Φ satisfies Laplace equation ∇2Φ = 0.We can thus
substitute Φxx + Φyy in equation (14) by −Φzz. Then
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Since
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We now show that equation (1) can be readily deduced. Indeed, since at point
P
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From equations (2), (16), (17) and (19) we arrive at the result
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We thus see that notwithstanding the well-known nonlocal nature of solutions of
Laplace equation, and the local dependence of curvature on the shape of the surface,
there can be some relationship between the two. The relationship between the partial
derivatives of f(x, y) and those of Φ(x, y, z) are the ones that essentially play the
role of the power series expansion of Φ(x, y, z) in reference [5]. We hope that the
differential geometric approach employed in the present article for calculating the
normal derivative of the static electric field near the surface of a curved conductor
is not only natural and convenient but that it will also be of use to junior students
of physics and engineering.
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[4] G. A. Estévez and K. F. Suen, Solution to Problems in Classical Electrodynamics
(Federal Publications, Hong Kong, 1977), pp. 23-27.
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