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Abstract: In many mathematical models of growth phenomena, an elemental area ¢A is
added to an object growing in the plane; in doing so, the perimeter of the object changes
with the area. If ¢A is an elemental area (a square of sides equal to unity), it turns out
that the changes of perimeter, ¢P; may have only …ve possible values: ¢P = 4; 2; 0;¡2; -4;
depending upon the place where ¢A is added to the cluster. Thus, the function relating
the area and the perimeter, A = f(P ), may be predicted if the probabilities of the di¤erent
changes of perimeter are known (or measured). During the aggregation of the n-th particle,
the area and the perimeter will be

An+1 = An +¢A and Pn+1 = Pn +¢P
respectively. We will herein present the method used with success in growth phenomena but
in a more general fashion. We assume that we try to generate any function, Y = f(X), by
means of any (…nite) number of increments ¢X and ¢Y chosen at random from a given set
of possibilities for each of them. Thus, the purpose of this paper is the study of the algorithm

Yn+1 = Yn +¢Y and Xn+1 = Xn +¢X
at the n-th step of the growth of the function.
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1. Introduction
Let us assume that there is a broken line in a plane joining the points P1(X1; Y1)

and P2(X2; Y2). In going from X1 to X2, along the direction of the X-axis, a certain



amount n1 of increment ¢X1 have been chosen at random; there is also a number
n2 of increments ¢X2; n3 of ¢X3; etc. In general there will be a number ni of
di¤erent increments ¢Xi. Thus, the segment X2¡X1 will be composed of ni(¢Xi)
segments; each of the ¢Xi are chosen at random; the increments ¢Xi may have
positive or negative values, including zero. The total (…nite) number of increments
¢Xi is if : If the increments ¢Xi are abundant, and much smaller than X2 ¡X1, it
may be said that

±X = X2 ¡X1 = ifX
i=1
¢Xini(¢Xi) (1.1)

The same reasoning may be applied to the increments of the ordinates in going
from Y1to Y2 with increments ¢Yj

±Y = Y2 ¡ Y1 = jfX
j=1
¢Yjnj(¢Yj) (1.2)

where jf is the total and …nite number of di¤erent increments.
The ratio between the two previous equations is

±Y
±X =

jfP
j=1
¢Yjnj(¢Yj)

ifP
i=1
¢Xini(¢Xi)

(1.3)

If nf is the total amount of steps, i.e., if it is assumed that
ifX
i=1
ni(¢Xi) =

jfX
j=1
nj(¢Yj) = nf (1.4)

and if the probabilities are de…ned as

pi(¢Xi) = 1
nf

ifX
i=1
ni(¢Xi) and pj(¢Yj) = 1

nf
jfX
j=1
nj(¢Yj) (1.5)

then, the following di¤erential equation may be written

±Y
±X =

jfP
j=1

¢Yjpj(¢Yj)
ifP
i=1
¢Xipi(¢Xi)

= F (X;Y )
G(X;Y ) (1.6)

If the functions F (X;Y ) and G(X;Y ) are known, the previous equation may
be perhaps integrated by any of the known numerical or analytical methods of
integration.
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In the examples of application below, we will restrict the number of increments
to ¢Xi = 1;¡1 and 0, and ¢Yj = 1;¡1 and 0; i.e., if = jf = 3. Furthermore
in order to simplify the presentation of the method, we will only consider functions
G(Y) and F(X); thus, the two integrals to be solved are

Z Y

Y0
G(Y )dY =

Z X

X0
F (X)dX (1.7)

or

YZ
Y0
[p(¢X = 1)¡ p(¢X = ¡1)] dY = XZ

X0
[p(¢Y = 1)¡ p(¢Y = ¡1)] dX (1.8)

where X0 and Y0 are initial conditions. The two terms contained between each
of the two brackets in the previous equation are the probabilities of choosing
¢X = 1; ¢X = ¡1; ¢Y = 1 or ¢Y = ¡1: In the following, we will give some
examples of application of Eq. (1.8), with increasing complexity.

2. The linear function
Let us assume (upper part of …gure 2.1) that all the probabilities of the incre-

ments ¢X and ¢Y are constants
p(¢X = 1) = C1 = 0:6; p(¢X = ¡1) = C2 = 0:1

and
p(¢Y = 1) = C3 = 0:55; p(¢Y = ¡1) = C4 = 0:25

with the obvious conditions that
p(¢X = 0) = 1¡ [p(¢X = 1) + p(¢X = ¡1)] = 0:3

and
p(¢Y = 0) = 1¡ [p(¢Y = 1) + p(¢Y = ¡1)] = 0:2

Upon integration of Eq.(1.8), the linear function becomes

Y = p(¢Y = 1)¡ p(¢Y = ¡1)
p(¢X = 1)¡ p(¢X = ¡1) X = C3 ¡C4

C1 ¡C2 X = 0:6X (2.1)

if the initial conditions are
X0 = Y0 = 0 (2.2)

The equation above may be considered as a ‘theoretical’ expression. We may
perform a numerical experiment (shown in the lower part of …gure 2.1), choosing
the increments ¢X and ¢Y at random with the given probabilities. The di¤erence
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between theory and experiment is quite small; it may be measured with a standard
deviation of the form

¾ = 1
YF

vuuuuut
NFX
n=1
(Ytheor;n ¡ Yexp;n)2

NF ¡ 1 = 0:0052 (2.3)

In this particular example, the straight line has performed a total of n = NF =
235839 steps in order to reach Y = YF from Y0 = 0:

Figure 2.1: The lower sector of the …gure is a straight line simulated with the Method of
Expectancies, with increments ¢X = 1, ¢X = ¡1 and ¢X = 0;¢Y = 1, ¢Y = ¡1 and
¢Y = 0 chosen at random. The probabilities of increments p(¢X) = f(Y ) are in the upper
left side of the …gure, and the probabilities p(¢Y ) = f(X) in the right side; the values of
the increments are indicated with 1;¡1 or 0. The constant set of probabilities are expressed
in the text. The theoretical solution is in Eq.(2.1), with the initial condition X0 = Y0 = 0:
The error between theory and numerical experiment, Eq.(2.3), is small. The total number
of steps used to draw this linear function is NF = 235839:
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Notice that with a certain amount of steps, NF , the straight line reaches a point
in space. If at this stage of the development the di¤erent probabilities of changes
of ¢X and ¢Y are modi…ed, and if the …nal point reached by the previous straight
line is considered as the starting point of another straight line, then we will obtain
a broken line. If the procedure is repeated a speci…c number of times, any …gure
in the plane, composed of straight lines, may be represented with this Method of
Expectancies. In order to reproduce the given …gure, a small amount of information
is required since most of the work is done at random.

3. A quadratic equation
Let us think now of an example in which the probabilities of increments ¢X

are linear functions of Y , and the probabilities of increments ¢Y are constant. The
assigned values for ¢X are

p(¢X = 1) = pin(¢X = 1) + [pfinal(¢X = 1)¡ pin(¢X = 1)] (Y =YF )
= 0:6¡ 0:6(Y = 70000) (3.1)

p(¢X = ¡1) = pin(¢X = ¡1) + [pfinal(¢X = ¡1)¡ pin(¢X = ¡1)] (Y =YF )
= 0:9(Y=70000)

(3.2)
p(¢X = 0) = pin(¢X = 0) + [pfinal(¢X = 0)¡ pin(¢X = 0)] (Y =YF )

= 0:4¡ 0:3(Y = 70000) (3.3)

and those for ¢Y are
p(¢Y = 1) = C1 = 0:4 and p(¢Y = ¡1) = C2 = 0:35 (3.4)

with
p(¢Y = 0) = 1¡ [p(¢Y = 1) + p(¢Y = ¡1)] = 0:25

Solving the two integrals of Eq.(1.8), with the probabilities given in Eqs.(3.1)
through (3.4), the following quadratic equation is obtained

Z Y

Y0
[p(¢X = 1)¡ p(¢X = ¡1)]dY = [pin(¢X = 1) = pin(¢X = ¡1)] Z Y

Y0
dY+

1
YF [pfinal(¢X= 1)¡ pin(¢X= 1) + pin(¢X= ¡1)¡ pfinal(¢X= ¡1)]

Z Y

Y0
Y dY

= 0:6(Y ¡ Y0)¡ 1:0714£ 10¡5(Y 2 ¡ Y 20 )
(3.5)
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for the integral at the left hand side of Eq.(1.8). For the integral at the right hand
side we obtain Z X

X0
[p(¢Y = 1)¡ p(¢Y = ¡1)]dX =

(C1 ¡C2)(X ¡X0) = 0:05(X ¡X0)
(3.6)

The resulting equation is
0:6(Y ¡ Y0)¡ 1:0714£ 10¡5(Y 2 ¡ Y 20 ) = 0:05(X ¡X0) (3.7)

If Eq.(3.7) is regarded as the theoretical view of the Method (shown with circles
in the lower part of …gure 3.1), the numerical experiment (full line in the same …gure)
…ts the theory with reasonable accuracy. One way to measure the error is by means
of the de…nition

¾ = 1
XF

sPNFn=1(Xtheor;n ¡Xexp;n)2
NF ¡ 1 = 0:0065 (3.8)

The sector of the curve where there is a minimum radius of curvature (near the
maximum reach of the curve along the X -axis), corresponds to the ‘time’ when
probabilities to choose ¢X = 1;¡1 or 0 are nearly the same. Even in this unfavor-
able sector of the curve, the method seems to work with good accuracy.

4. A set of hyperbolas
We will work out now an example in which both¢X and¢Y are linear functions

of Y for the former and of X for the later. The functions are
p(¢X = 1) = pin(¢X = 1) + [pfinal(¢X = 1)¡ pin(¢X = 1)] YYF
= 0:7 + (0:3¡ 0:7) Y

70000 = 0:7¡ 0:4 Y
70000

(4.1)

p(¢X = ¡1) = pin(¢X = ¡1) + [pfinal(¢X = ¡1)¡ pin(¢X = ¡1)] YYF
= 0 + (0:5¡ 0) Y

70000 = 0:5
Y

70000
(4.2)

p(¢Y = 1) = pin(¢Y = 1) + [pfinal(¢Y = 1)¡ pin(¢Y = 1)] XXF
= 0:6 + (0:3¡ 0:6) X

140000 = 0:6¡ 0:3 X
140000

(4.3)

p(¢Y = ¡1) = pin(¢Y = ¡1) + [pfinal(¢Y = ¡1)¡ pin(¢Y = ¡1)] XXF
= 0:2 + (0:6¡ 0:2) X

140000 = 0:2 + 0:4
X

140000
(4.4)
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Figure 3.1: A quadratic function, as computed with the Method of Expectancies, is shown in
the lower part of the …gure. It results from increments chosen at random with probabilities
p(¢X) = f(Y ) (upper left) and p(¢Y ) = f(X) (upper right). The di¤erent values of
the increments are indicated with +1 ,-1 and 0. Probabilities are expressed by Eqs.(3.1)
through (3.4). The theoretical solution, Eq.(3.7), is shown with open circles. The small
error of Eq.(3.8) denotes that the …t is quite satisfactory.

One of the integrals of Eq.(1.8) is
Z Y

Y0
[p(¢X = 1)¡ p(¢X = ¡1)] dY = Z Y

Y0
[pin(¢X = 1)¡ pin(¢X = ¡1)] dY+

1
YF

Z Y

Y0
f[pfinal(¢X= 1)¡pin(¢X= 1)]¡[pfinal(¢X= ¡1)¡pin(¢X= ¡1)]gY dY =

0:7(Y ¡ Y0) + ¡0:9
2£ 70000(Y 2 ¡ Y 20 ) = 0:7(Y ¡ Y0)¡ 6:4286£ 10¡6(Y 2 ¡ Y 20 )

(4.5)
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The other integral is

Z X

X0
[p(¢Y = 1)¡ p(¢Y = ¡1)] dX =

Z X

X0
[pin(¢Y = 1)¡ pin(¢Y = ¡1)] dX+

1
XF

Z X

X0
f[pfinal(¢Y =1)¡ pin(¢Y =1)]¡[pfinal(¢Y =¡1)¡ pin(¢Y=¡1)]gXdX =

(0:6¡ 0:2)(X¡X0) + ¡0:7
2£ 140000 (X2¡X20) = 0:4(X¡X0)¡2:5£ 10¡6(X2¡X20 )

(4.6)

Figure 4.1: A numerical model chooses increments ¢X = 1;¡1 or 0 at random with proba-
bilities p(¢X) = f(Y ) : they are varying linearly with Y, as shown in the upper left sector.
In a similar fashion, increments ¢Y = 1;¡1or 0 are also chosen at random with probabilities
p(¢Y ) = f(X) : they are also varying linearly but with X, shown in the upper right sector;
probabilities are in Eqs.(4.1) through (4.4). The result is the set of hyperbolas in the lower
part of the …gure. The use of the Method of Expectancies yields Eqs.(4.5) and (4.6), quite
well approximated by numerical results.
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The theoretical Eqs.(4.5) and (4.6) are represented with a numerical experiment
in the lower part of …gure 4.1. The upper part of this …gure shows the probabilities by
means of which the six di¤erent increments are randomly chosen. Hyperbolas start
from di¤erent points P0(X0; Y0) indicated with full circles; the direction of growth
of the curves is represented with small arrows. These curves have two straight lines
(tangent to the hyperbolas) which intersect each other at one point. A numerical
experiment can be performed with the Method of Expectancies in order to draw the
two tangents, provided their two starting points (X0; Y0) are suitably selected by
means of ordinary analytical procedures. If one experiment starts from the lower
left sector (in …gure 4.1) the zigzagging curve will follow the tangent with reasonable
accuracy when it is rather far from the point of intersection; the same will occur
when another numerical experiment starts near the upper right corner of …gure 4.1.
Nevertheless, when both experiments are very near the point of intersection they
will deviate from the tangents. In some cases the deviation (by chance) is small
and in other they miss the point of intersection with curved paths. These random
instabilities are due to the fact that the probabilities of choosing ¢X = 1 or ¡1
and ¢Y = 1 or ¡1 are nearly the same in the neighborhood of the intersection of
tangents. It is very likely that the random process near the intersection of tangents
exhibit some properties of chaos.

5. A trigonometric function
For the left part of Eq.(1.8) we select the constant values

p(¢X = 1) = C1 = 0:6; and p(¢X = ¡1) = C2 = 0:3 (5.1)
and the result of the integration becomes

YZ
Y0
[p(¢X = 1)¡ p(¢X = ¡1)] dY = (C1 ¡C2)(Y ¡ Y0) (5.2)

For the increments ¢Y we will choose

p(¢Y = 1) = pmean(¢Y = ¡1) + pampl(¢Y = 1) sinµ2¼XXF
¶

= 0:4 + 0:2 sin
µ2¼X
XF

¶
(5.3)

p(¢Y = ¡1) = pmean(¢Y = ¡1) + pampl(¢Y = ¡1) sinµ2¼XXF
¶

= 0:4¡ 0:2 sinµ2¼XXF
¶

(5.4)
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both with XF = 300000: pmean is a mean probability in which it is mounted a
sinusoidal function of maximum amplitude given by pampl: Then the integral in the
right hand side of Eq.(1.8) becomes
Z X

X0
[p(¢Y = 1)¡ p(¢Y= ¡1)] dX = [pmean(¢Y= 1)¡ pmean(¢Y= ¡1)] Z X

X0
dX

+[pampl(¢Y = 1)¡ pampl(¢Y = ¡1)] Z X

X0
sin

µ2¼X
XF

¶
dX

= (0:4¡ 0:4)(X ¡X0) + µXF2¼
¶
(0:2 + 0:2)

·
cos

µ2¼X0
XF

¶¡ cosµ2¼XXF
¶¸

= 1:9099£ 104 ·1¡ cosµ2¼XXF
¶¸

(5.5)
The resulting theoretical solution

Ytheor = 6:3662£ 104 ·1¡ cosµ2¼XXF
¶¸

(5.6)
is shown with small circles in the lower part of …gure 5.1. If the increments ¢X and
¢Y are chosen at random, with the assigned probabilities, shown in the upper part
of …gure 5.1 and given in Eqs.(5.1), (5.3) and (5.4), a numerical experiment may be
performed. It may be clearly seen that the experiment (full line) …ts quite well the
theoretical results given by Eq.(5.6).

An error may be de…ned as

¾ = 1
Ymax

sPNFn=1(Ytheor;n ¡ Yexp;n)2
NF ¡ 1 = 0:00354 (5.7)

The reference of the error is Ymax, equal to twice the amplitude of the function; we
have covered two cycles of the cosine function, with a total of NF = 2£ 106 steps.
6. A set of self-avoiding curves

For the next example, we will choose the following sinusoidal variation of prob-
abilities

p(¢X = 1) = pmean(¢X = 1) + pampl(¢X = 1) sin
µ2¼Y
YF

¶

= 0:3 + 0:25 sin
µ2¼Y
YF

¶
(6.1)

p(¢X = ¡1) = pmean(¢X = ¡1) + pampl(¢X = ¡1) sinµ2¼YYF
¶

= 0:4¡ 0:3 sinµ2¼YYF
¶

(6.2)
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Figure 5.1: A trigonometric function, Eq.(5.6) with open circules, is reasonably represented
with the Method of Expectancies if probabilities of increments are given by Eqs.(5.1), (5.3)
and (5.4), in the upper part of the …gure. The numerical integration demands NF = 2£ 106
steps, with the small error of Eq.(5.7).

With these two expressions the left hand side of Eq.(1.8) becomes
Z Y

Y0
[p(¢X=1)¡ p(¢X= ¡1)] dY = [pmean(¢X=1)¡ pmean(¢X= ¡1)] Z Y

Y0
dY

+[pampl(¢X = 1)¡ pampl(¢X = ¡1)] Z Y

Y0
sin

µ2¼Y
YF

¶
dY

= (0:3¡ 0:4)(Y ¡ Y0) + µYF2¼
¶
(0:25 + 0:3)

·
cos

µ2¼Y0
YF

¶¡ cosµ2¼YYF
¶¸

= ¡0:1(Y ¡ Y0) + 4:3768£ 103 ·cosµ2¼Y0YF
¶¡ cosµ2¼YYF

¶¸

(6.3)
With respect to the right hand side of Eq.(1. 8), we de…ne
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p(¢Y = 1) = pmean(¢Y = 1) + pampl(¢Y = 1) sin
µ2¼X
XF

¶

= 0:5 + 0:2 sin
µ2¼X
XF

¶
(6.4)

p(¢Y = ¡1) = pmean(¢Y = ¡1) + pampl(¢Y = ¡1) sinµ2¼XXF
¶

= 0:3¡ 0:2 sinµ2¼XXF
¶

(6.5)

by means of which

Z X

X0
[p(¢Y =1)¡ p(¢Y= ¡1)] dX = [pmean(¢Y =1)¡ pmean(¢Y = ¡1)] Z X

X0
dX

+[pampl(¢Y = 1)¡ pampl(¢Y = ¡1)] Z X

X0
sin

µ2¼X
XF

¶
dX

= (0:5¡ 0:3)(X ¡X0) + µXF2¼
¶
(0:2 + 0:2)

·
cos

µ2¼X0
XF

¶¡ cosµ2¼XXF
¶¸

= 0:2(X ¡X0) + 3:1831£ 103 ·cosµ2¼X0XF
¶¡ cosµ2¼XXF

¶¸

(6.6)
With the probabilities given in Eqs.(6.1), (6.2), (6.4) and (6.5), shown in the

up part of …gure 6.1, we have performed numerical experiments with the Method
of Expectancies in a …eld of XF = YF = 50000: The results of 100 curves are
shown in the lower part of …gure 6.1; each of them starts along Y0 = ¡YF and in
the range ¡2XF · X0 · 2XF . The distance between each origin of the curves is
XF=25; each of the curves is allowed to perform NF = 106 steps of integration. The
horizontal …eld of the lower part of …gure 6.1 is 4XF = 200000 and the vertical size
is 2:5YF = 125000, approximately.

The other type of curves are closed loops. Four of them (‘eyes’) are clearly
visible in the lower part of …gure 6.1, and they are well de…ned because many curves
started at Y0 = ¡YF ; the rest of the eyes are empty because no closed loops started
in the inside of the eyes. In the vicinity of the closed loops there are regions of
high instability due to the fact that probabilities of increments of one class are
approximately equal (or equal) to the probabilities of increments of another class.
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Figure 6.1 The set of six periodic probabilities of increments given by Eqs.(6.1), (6.2), (6.4)
and (6.5) (in the upper part of the …gure), yield a set of self-avoiding curves when the method
herein proposed is used. The theoretical solution is in Eqs.(6.3) and (6.6). See text for the
initial conditions of each curve. It may be clearly seen that there are two types of curves.
On the one hand there are self-avoiding ‘open’ curves; some examples are the curves starting
at Y0 = ¡YF and at X0 = ¡2XF ;¡XF ; 0;XF or 2XF . These open curves ascend in a
wavy fashion towards large and positive values of Y .

These regions of high instability nearby the eyes are due to the fact that the
Method of Expectancies, for this particular example, struggles to decide between
¢X = 1; 0 or ¡1, and between ¢Y = 1; 0 or ¡1: The points of highest instabil-
ity, which may be called ‘points of indecision’, may be found from Eqs.(6.4) and
(6.5) by equating p(¢Y = 1) = p(¢Y = ¡1) for the horizontal axis. This yields
Xind=XF = 0:5833 and Xind=XF = 0:9167. The other two points of indecision along
the horizontal axis come from p(¢X = 0) = p(¢X = ¡1) with Xind=XF = 0:0833
and Xind=XF = 0:4167.
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Points of indecision along the vertical axis can be found with a similar procedure
from Eqs.(6.1) and (6.2): p(¢X = 1) = p(¢X = ¡1). They are placed at Yind=YF =
0:0291 and Yind=YF = 0:4709. From the condition p(¢X = 1) = p(¢X = 0), it is
found that Yind=YF = 0 and Yind=YF = 0:5; and from p(¢X = ¡1) = p(¢X = 0);
the last pair of points of indecision is Yind=YF = 0:0461 and Yind=YF = 0:4539:

7. Conclusion
It is proved that a wide variety of functions Y = f(X) can be approximated

with the Method of Expectancies, in which the function is built up step by step
with increments ¢X and ¢Y given in a probabilistic way. The zigzagging line thus
obtained (at random) is compared with analytic functions obtained through the
integration of the resulting di¤erential equation. The error between theoretical and
random numerical experiments is reasonably small. It should also be noticed that
very complex patterns of curves may be obtained with scarce initial information.
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