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Abstract

In this study, the potential of remote sensing in tropical forests is examined in 
relation to the  diversification of sensors. We report here on the comparison of  
alternative methods that use multisource data from Airborne Laser Scanning 
(ALS), Airborne Color Infrared Photograph (CIR), Quickbird and ALOS 
AVNIR-2 to estimate stem volume and basal area, in Laos. The predictors of ALS 
metrics were calculated by means of the canopy height distribution approach, 
while predictors from both spectral and textual features. The correlation of remote 
sensing materials and field data were used to demonstrate needs for field inventory 
in different forest landscapes and varying tropical forest conditions. Variogram 
based analysis was used to derive optimal forest inventory procedure for different 
parts of case country.
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Resumo

Neste estudo, o potencial do sensoriamento remoto em florestas tropicais é 
examinado em relação a diversidade de sensores. Registramos aqui a comparação 
de métodos alternativos que utilizam dados de fontes múltiplas do Airborne Laser 
Scanning (ALS), Airborne CIR, Quickbird e ALOS AVNIR-2 para estimar o 
volume do caule e a área basal em Laos. Os preditores dos dados ALS foram 
calculados pelo método da distribuição de altura do dossel enquanto preditores para 
características espectrais e textuais foram geradas, respectivamente, para os dados 
Airbone CIR e ALOS AVNIR-2. A correlação dos materiais de sensoriamento 
remoto e dados de campo foram usados para demonstrar a necessidade do 
inventário de campo em diferentes paisagens florestais e condições variáveis em 
floresta tropical. A análise baseada no variograma foi utilizada para gerar um 
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Introduction

In the global context of Reducing 
Emissions from Deforestation and forest 
Degradation (REDD), many tropical 
countries are making efforts to develop 
remote sensing-aided carbon assessment 
methodologies. To achieve the accuracy 
requirements specified by Tier II and Tier 
III, as defined by the Intergovernmental 
Panel on Climate Change (IPCC, 2006), 
the approach that integrates a field plot 
inventory with satellite mapping and carbon 
modelling can be employed and validated so 
that the improved ecosystem protection and 
increased carbon sequestration can qualify 
for a corresponding increase in carbon credits 
(GIBBS et al., 2007 ). By means of remote 
sensing, many of the forest attributes of 
interest are retrievable at varying accuracy 
levels with due cost-effectiveness. Compared 
with traditional field inventory work, forest 
inventories assisted by remote sensing reap 
the benefits not only of lower cost and less 
time consumed, but also with respect to 
the feasibility of conducting inventories 
in unreachable forests located in remote 
or even sometimes life-threatening areas, 
such as in Laos, where 12 out of the 18 
provinces are peppered with unexploded 
bombs or landmines as a legacy of past wars 
(TANSUBHAPOL, 1998).

National Forest Inventories are 
conducted in many countries for forest 
and carbon parameter reporting. Forest 
area, timber volume, biomass, health and 
productivity are considered key parameters 

of such assessments. In addition, to these core 
parameters, increasing attention is now paid 
to both the non-timber value of forests and 
also to isolated trees outside main forest areas. 
Ideally, the inventory methodology should 
follow a procedure which can be repeated as 
required at regular intervals. The information 
is used typically in strategic or provincial 
level planning. 

When a national level forest data 
collection strategy is planned, typically the 
following steps are followed:
1. Study of the target population: Landscape 

patterns and forest structure.
2. Comparison of remote sensing materials 

for stratification.
3. Planning and design of suitable field 

work for different variables and forest 
types.

4. Compar i son  o f  the  procedura l 
alternatives for updating.

One of best examples of the National 
Forest Inventory (NFI) planning process is 
the Swedish NFI. As a basis for the statistical 
design of the survey, a geostatistical analysis is 
used to determine the variation within areas, 
the importance of the size of the sample 
plot, the time required and the economic 
practicability of the available resources. 
The analysis has resulted in a division of 
the country into 5 regions, the designing 
of survey tracts, a weighting between 
permanent and temporary survey tracts and 
a standard size of sample plot (MATERN, 
1960; MATERN, 1981; RANNEBY, 1981a; 
RANNEBY, 1981b). Variograms have been 
used to describe variations in land use, forest 

procedimento otimizado para o inventário florestal de diferentes partes do país 
em estudo. 

Palavras-chave: inventário florestal de larga escala; desenho amostral; dados 
auxiliares; custo.
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volume and topography (MATERN, 1960; 
RANNEBY, 1981b), and these spatial 
functions have been used to define an 
effective layout of the survey tracts.

Forest inventory systems based on 
remote sensing and their implementations 
can be categorized in the following way:
•	 Remote sensing oriented systems; the 

main attention has been paid to the 
identification of different forest classes, 
including species classes and volume 
categories, meant for thematic map 
production purposes (e.g. HORLER; 
AHERN, 1986; BROCKHAUS; 
KHORRAM, 1992). Ground truth 
data is collected from subjectively 
chosen training areas with some field 
observations.

•	 Field data oriented systems; the 
calculation of inventory results is based 
on field sample plots and the inventory 
system has been established according 
to a pre-designed sampling frame. 
Remote sensing data have been used 
as auxiliary information mainly in two-
phase sampling schema (e.g. POSO, 
1984; KÖHL, 1990) or in calibration 
approach (e.g. BAUER et al., 1997). 

•	 Updating oriented systems; the main 
interest is to fulfill the information 
needs of the database and control the 
quality of data. The base information has 
mostly been collected with more accurate 
inventory systems, and remote sensing 
data are used for monitoring purposes 
and to allocate field checking (VARJO, 
1997). The existing data can be utilized 
as auxiliary data in the planning of a data 
collection procedure.

The accuracy of satellite image 
classification can be increased by using 
information from ancillary sources, such as 

topographical maps (eg. STRAHLER, 1980; 
HUTCHINSON, 1982; SKIDMORE, 
1989), spatial characteristics of the 
image (PEDDLE; FRANKLIN, 1991; 
FRANKLIN; WILSON, 1992) and database 
information (VARJO, 1997). Ancillary 
data can be used before, during or after 
classification, through stratification, classifier 
operations or post-classification sorting 
(HUTCINSON, 1982). The optimized 
use of existing data and proper acquisition 
procedures of new information are the 
ways towards the combination of effective 
data service systems. For the first time 
field data can be collected, for example, by 
using a systematic field plot network or 
proportional field plot allocation to strata 
derived from an unsupervised satellite 
image interpretation. Simulation studies 
(TOKOLA; SHRESTHA, 1999) can 
be used after basic information has been 
collected on the target population, usually 
after the first inventory.

Remote sensing is the best approach 
to estimate biomass at a regional level 
where field data is difficult to collect and 
sampling is the only feasible alternative 
to cover entire areas. Almost two decades 
have passed since pioneers like Sader et  al. 
(1989) related biomass to reflectance. Since 
then, several studies in different regions have 
found strong correlations between biomass 
and reflectance at different wavelengths: in 
India (ROY; RAVAN, 1996 ), in Bolivia and 
Brazil (STEININGER, 2000), in Malaysia 
(PHUA; SAITO, 2003 ), and in Eastern 
Brazil (LU et al., 2004).

Biomass is a three-dimension feature 
of vegetation and has been estimated using 
popular optical sensors like Landsat or 
Spot. However, the ability of these sensors 
is limited to two dimensions only, i.e. the 
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upper layers of vegetation. Steininger (2000) 
found that the canopy reflectance–biomass 
relationship saturated at around 150 Mg/ha. 
These drawbacks result in large uncertainties 
and the methods that are used may not be 
applicable in all conditions (FOODY et al., 
2003). Houghton et al. (2001 ) found that 
AGB (above ground biomass), below ground 
biomass and necromass for large geographic 
extents like the Brazilian Amazon vary from 
the lowest estimates of 78 billion Mg up 
to the highest of 186 billion Mg. Another 
approach to biomass estimates using remote 
sensing applications is based on canopy 
density (SUGANUMA et al., 2006 ) which 
is represented by tree cover percentage maps. 
The main advantage of tree cover percentage 
maps over traditional maps of discrete 
classifications is the representation of the 
internal variability of vegetation distribution. 
This is also standard approach in visualising 
National Forest Inventory results in many 
countries (eg. REESE et al. 2002)

Despite much early promise, recent 
remote sensing analyses of Bornean forests 
have shown only weak correlations between 
data for one or two spectral bands and tree 
biomass (FOODY et al., 2001 ). Multiple 
regression involving combinations of many 
bands generally do a little better in the 
humid tropics (i.e., r2 < 0.3: FOODY et al., 
2001; FOODY, 2003), Good correlations 
have been observed where neural network 
based estimation have been used (FOODY 
et al., 2001, 2003; FOODY; CUTLER, 
2003) rather than multiple regressions. These 
models are, however, high order (i.e., have 
many parameters), estimation process is 
difficult to control and therefore, may have 
large uncertainties associated with their 
predictions. 

Comparisons of remotely sensed data 
(Landsat-5 TM resolution is 0.09 ha) with 
measurements from individual plots 0.1–5 
ha in area will be sensitive to: (i) small errors 
in the georeferencing, (ii) difficulties in 
sampling the complex forest resulting from 
selective felling, and (iii) for stand margin 
reflectance variation (PINARD; PUTZ, 
1996; TOKOLA; KILPELAINEN 1999), 
weak  correlations may be partly attributed to 
inadequacies in the handling of the ‘ground 
truth’ (i.e., the plot) data.

The state-of-the-art method for 
accurate biomass estimate uses remote 
sensing is LiDAR data (light detection and 
ranging), designed to allow the penetration 
of the signal through the canopy. During the 
last 10 years there is a growing interest for 
airborne and spaceborne LiDAR in order 
to estimate biomass (LEFSKY et al., 1999; 
DRAKE et al., 2002). Spaceborne LIDAR 
has been utilised using radargrammetric 
processing (KARJALAINEN et al. 2012), 
and it allow promising measurement of 
forest height and vertical structure with low 
precision. This active sensor is, by far, the best 
option to estimate biomass at a local scale. 
Radar data has also been used to estimate 
biomass, Luckman et al. (1998) has  a well 
discussed of the JERS-1 bands to estimate 
AGB in the central Amazon.

Some studies (eg. ASNER et al., 
2003) have combined a detailed field study 
of forest canopy damage with calibrated 
Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) reflectance data and texture analysis 
to assess the sensitivity of basic broadband 
optical remote sensing to selective logging 
in Amazonia. The field study encompassed 
measurement of ground damage and canopy 
gap fractions along a chronosequence of 
post-harvest regrowth of 0.5–3.5 years. It 
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was found that canopy damage and regrowth 
rates varied according to the logging method 
used (either conventional logging or reduced 
impact logging). Areas used to stage felled 
trees prior to transport, log decks, had the 
largest gap fractions immediately following 
cutting. Log decks were quickly colonized 
by early successional plant species, resulting 
in significant gap fraction decreases within 
1.5 years after site abandonment. Although 
log decks were the most obvious damage 
areas on the ground and in satellite imagery, 
they accounted for only 1–2% of the total 
harvested area of the blocks studied. Other 
forest damage features such as tree-fall 
gaps, skid trails, and roads were difficult 
to recognize in Landsat reflectance data or 
through textural analysis. These landscape 
features could be only crudely resolved in the 
most intensively logged forests and within 
about 0.5 years following harvest. Forest 
damage within any of the landscape strata 
(decks, roads, skids, tree falls) could not be 
resolved with Landsat reflectance or texture 
data when the canopy gap fraction was < 
50%. The basic Landsat ETM+ imagery lacks 
the resolution of forest structural features 
required for quantitative studies of logging 

damage. Landsat textural analyses may be 
useful for broad delineation of logged forests, 
but detailed ecological and biogeochemical 
studies will probably need to rely on other 
remote sensing approaches. Until spatial 
gradients of canopy damage and regrowth 
resulting from selective logging operations 
in tropical forests are resolved, the impacts 
of this land use on a continental scale will 
remain poorly understood.

Forest cover monitoring has a long 
history in Lao PDR. During 1985-89 the 
first and second phase of the SIDA supported 
Lao-Swedish Forestry Programme, and 
conducted the first nation-wide assessment 
of Forest and Land Use by aerial photo 
interpretation on sample plots based on 
1: 30,000 scale aerial photos from 1982. 
The result of this initial assessment was 
then updated to the period 1989-1992 by 
interpretating these image plots on SPOT 
Satellite Image Maps. The final report of 
the Nationwide Reconnaissance Survey was 
published in December 1992.  An additional 
third land cover project was implemented 
during 2002 to identify further changes in 
land use and forest/vegetation cover in the 
country and in the regions. 

Table 1. Comparison of coefficient of determination estimates for biomass in tropics

Sensors Biomass, R2 Area and Sources
MODIS 0.55-0.82 Colombia (ANAYA et al., 2009 )

Landsat TM

0.36-0.66
0.32-0.7
0.25-0.69
0.3-0.5
0.51
0.53

Amazon (LU et al., 2004)
Brazil (FOODY, 2003)
Malesiya (FOODY, 2003)
Thailand (FOODY, 2003)
Brazil (STEININGER, 2000)
Bolivia (STEININGER, 2000)

Landsat ETM 0.01-0.57 Amazon (ASNER et al., 2003)
Ikonos 0.70-0.92 French Guiana (PROISY et al., 2007)
Quickbird 0.62-0.70 Bolivia (BROADBENT et al., 2008)
Lidar 0.87-0.94 Costa Rica (DRAKE et al., 2002)
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The first national forest inventory 
with field work of accessible forests was done 
during the period 1991-1999. The Swedish 
Forestry Programme also supported this 
activity. This work resulted in a complete field 
sample plot database and reliable statistics for 
the entire country. 

Material and Methods 

Structure of Forest Areas

The relative spatial distribution of forests 
and trees varies, because of changing land 
use practices, differences in the terrain, 
relief, fertility of soil, and the hydrology, 
competition, and size distribution of trees. 
On a national level, both correlation and 
autocorrelation functions have been employed 
to interpret the larger structures of forest area, 
and forest volumes. The functions describe 
the similarity of forest characteristics in 
terms of distance and allow avoiding 
inefficient remeasurement of similar forest 
areas. For example, in Scandinavian forests 
there is a slightly increasing autocorrelation 

until a 200m interval distance is used. This 
information is used to estimate the optimal 
distance between inventory tracts, the overall 
shape of the tract, and the distance between 
sample plots within tracts. For example, 
to obtain a sufficient sampling set-up for 
the entire nation of Sweden, the country 
is divided into five regions with marginally 
diverse correlation functions for different 
variables. The final sampling design is based 
on their spatial characteristics and other 
practical considerations.

Variograms were used to estimate 
the standard error with regard to large areas 
and to describe spatial autocorrelation. 
Autocorrelation is indicated by similarity 
between locations. Distance between useful 
plots can best be done using autocorrelation. 
At a certain point, the optimum density of 
network plots is reached, and any further 
increases will not yield much more information. 
When sample of remote sensing images are 
used in measuring plots, the size of image is 
also critical, that we can cover different type of 
objects. If we have very high resolution image 
with small area coverage, it is very difficult 
to obtain good regional data in case of high 

Figure 1. Sample of the estimated variogram for Huaphane Province (range 1090 m). X-axis refers 
to distance and Y-axis to co-variance. Similar variograms were estimated for each province.
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autocorrelation of forest characteristics. So, 
we need to have good spatial accuracy and 
large enough coverage of different forest types 
inside remote sensing scene. 

The standard errors of systematic 
cluster sampling can be estimated using 
model-based estimators, which utilize the 
parameters of correlation functions. This way, 
the information about spatial dependency can 
be utilized to estimate error while the spatial 
structure of forests is taken into account.

Variograms were estimated separately 
for each province of country. Capital area is 
a totally different area compared to other 
provinces. Land use is correlated until 2.3 
km. Northern provinces have correlation 
until 0.78 km and form unique areas for 
similar inventory technique. Other major 
areas of the country have correlation up to 
1-1.3 km. The southern forested districts have 
correlation up to 1.7 km. We can therefore 

Figure 2.  Areas for different forest inventory methods are defined using variogram parameters. 
Green color of left side figure indicates actual forest area and right side figure 
demonstrate four different categories for specific inventory methodology. 

divide the regions into four categories that 
need each a different inventory methodology: 
One for capital area, second for the north-
western region, third for northern region and 
fourth for the southern region (Figure 2).

Structure of Forest Types

There are many forestry variables that 
are spatially sparse and scattered. This is often 
the case when one is assessing coarse woody 
debris in managed forests, or surveying 
threatened species. The spatial description 
of sparse populations can be problematic. 
On the landscape level, information about 
spatial distribution of different key habitats 
and areas with a high ecological value are 
used to assess the probability of existing 
rare species. Field data about indicator 
species and remote sensing data about 
landscape features are valuable as a priori 
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information for estimating such presence/
absence probability and for stratifying areas 
of interest.

The structure of forest types was 
studied using National Forest Inventory 
(NFI) plots, where the length of specific type 
was recorded. There was no large difference 
between provinces in terms of mean size of 
forest type stand. When 66 % probability 
distance is applied (mean+std) it can be 
concluded that different types should appear 
after 250 m. When 99 % probability distance 
is applied (mean+2*std) it can be concluded 
that different types should appear after 400 
m. However, normally two observations from 
each forest type should be sufficient and 
therefore the distance between plots should 
be c. 250 m for effective field work.

Comparison of Mapping and Sampling 
Alternatives

There are many alternative remote 
sensing materials available for this feasibility 
study. Unfortunately the selection of 
satellite imagery data is not a very easy task. 
Traditionally 20-30 m ground resolution 
imageries have been used in national level 
inventories. However, it has been found in 
many studies that separation between scrub 
and woody vegetation is quite difficult at this 
resolution. Higher resolutions are required 

Figure 3. Alternative remote sensing materials showing IRS, ALOS, Quickbird, and Laserscanning  
material used in forest inventory methodologies

(eg. 2.5-10 m multispectral IRS LISS-4 MX 
or SPOT) High resolution imagery allows the 
use of texture analysis needed for separation 
of trees and other green vegetation. Limited 
imagery availability probably requires 
that a combination of different sensors is 
employed. Three QuickBird satellite images 
with 0.6 meter ground resolution and three 
Kompsat-2 images with approximately one 
meter resolution were also used (Figure 3).

In the traditional national inventory, 
biomass estimates are based on field 
measurements of the number of trees per 
hectare combined with diameter and height 
of each tree. To update such measurements 
is both time consuming and expensive. 
Costs may be reduced by updating only a 
fraction of total area each year, but this will 
obviously lead to global estimates always 
being somewhat outdated. New technology 
is being introduced for this purpose. By 
measuring the time of laser light emitted 
from equipment (Lidar, ALS) mounted on 
aircraft to be reflected from the ground and 
the canopy of vegetation, one may directly 
estimate biomass density.

Two phase sampling with regression 
estimators (combining data from field 
samples and samples in remote sensing 
material by means of regression techniques) 
provides a systematic approach to compare 
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alternatives with varying coefficient of 
determination (R²). Pilot tests are normally 
implemented in those conditions where the 
estimated performance of specific remote 
sensing material (R²) is not very well known. 
The coefficient of determination (R²) is used 
in the context of statistical models wherein 
the main purpose is the prediction of future 
outcomes on the basis of other related 
information. It is the proportion of variability 
in a data set that is accounted for by the 
statistical model. It provides a measure of how 
well future outcomes are likely to be predicted 
by the model. In this paper, analysis is made for 
different R² levels and remote sensing material 
specific coefficients have been estimated using 
literature and best knowledge gained in other 
countries. The capacity of very high resolution 
images has been assumed to be close to aerial 
photographs.

Time Studies

The effectiveness of the sampling 
desigThe effectiveness of the sampling design 
was estimated analysing multiple relations 
between direct and indirect work operations 
carried out in the sample plot and tract. 
The time required for carrying out different 
operations was ascertained. According to the 
time input required for carrying out different 
operations in a single tract and sample plot, 
the time required for a full tract for different 
numbers of sample plots was estimated. 
Average Time required for field work was 
evaluated in previous inventory.  Workload 
for each cluster/tract is based on camping, 
travelling by car and walking to the tract. Plot 
level work is separated and depends on the 
amount of plots within each tract.

Typically, one inventory team consists 
of 4-8 persons. The size of crew needed and 

the amount of vehicles are the most important 
costs. Average time estimates from teams 
in Saravane province test  are presented in 
decimal hours. Walking time between plots 
(250 m in the new design) was also estimated. 
Optimal times for each cluster were calculated 
using the formula of Zeide (1980). This 
formula is intuitively quite clear: the greater 
the distance between plots the larger they 
must be. It is not worthwhile to spend a lot of 
time travelling to establish a small plot.

The cost of field measurements can 
be compared to detailed remote sensing 
plots. The VHR (Very High Resolution) 
and Laser scanning plots are as expensive as 
field plots without vehicle leasing costs. If 
an organisation already has a vehicle in use, 
the additional costs are small. However, if 
cars need to be hired around 2-5 VHR/ALS 
remote sensing plots can be measured for the 
same price as a field plot.

Results

Quality of ALS & Quickbird Data

The reliability of ALS is very good in 
estimation of biomass properties (Figure 4). 
These results were calculated using field plots, 
ALS variables and regression analysis. 

First pulse variables include first-of-
many and only echoes. Last pulse variables 
include last-of-many and only echoes. 
Intermediate echoes were ignored. The height 
percentile variables contain 11 bands with 
the height at given percentiles: 5%, 10%, 
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 
and 95%. Ground hits were excluded. The 
proportional density variables contain 11 
bands with the density for: 5%, 10%, 20%, 
30%, 40%, 50%, 60%, 70%, 80%, 90% and 
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95%. The other statistics variables include, 
in this order: mean elevation, elevation 
standard deviation, elevation coefficient of 
variation, density. Ground hits were excluded 
for elevation mean, standard deviation and 
coefficient of variation. Coefficient of variation 
was set to zero where mean elevation was zero. 
Density was calculated as the ratio of number 
of vegetation hits (any vegetation excluding 
ground) to the number of total hits.

Field plots were used by combining 
the four most similar plots, because small 
plots didn’t give reliable response. However, 
regression models resulted in about 16% 
RMSE for basal area, 6% RMSE for dominant 
diameter, 8% RMSE for height and 18% 
RMSE for biomass and carbon. 

Google Earth was used for geometric 
referencing and the Globcover satellite based 
land cover map was used to test the sampling 
designs. A digital elevation model from the 
Shuttle Radar Topography Mission (SRTM) 
was used to remove the topographic effects 
from radar data. AVNIR optical satellite data 
with 10 meter resolution and ALOS PalSAR 

Figure 4. Major ALS Pilot reliability statistics

radar data with approximately 30 meter 
resolution for the whole Savannakhet was 
obtained from the European Space Agency. 
However, optical data from the western part 
of Savannakhet arrived too late to be included 
in the analyses. 

Stratified sampling was compared 
with non-stratified sampling. Visual and 
numerical interpretation of satellite images 
was applied (Figure 5) using Quickbird data. 
In the visual interpretation Lao and Finnish 
experts analyzed land cover class proportions 
within 50 m by 50 m squares that were placed 
at 800 m distances within the VHR images. 
Crown closure within the forest class and 
degree of degradation were also evaluated. A 
land cover and biomass map was then made 
of Savannakhet using both the radar data and 
the optical AVNIR data.

The results indicated that a relatively 
high resolution is required when scrub 
and forest needs to be separated. However, 
observation was based on visual verification 
and no field data was used to compile this 
result.
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Figure 5. QuickBird image area of 10 km by 10 km - Class proportions from the maps produced. 
(VTT2009)

The empirical evaluation of the 
AVNIR map showed high overall accuracies 
in land cover classification. Forest and 
non-forest areas could be separated very 
well in AVNIR classification. In some 
cases the VHR image classification to the 
target classes was not completely plausible 
and the classified AVNIR map may have 
been more reliable than the plot evaluation. 
The coefficient of determination R² in the 
growing stock volume estimation was in the 
order of 0.6 (several ground test set of ground 
plots were merged to one test unit).

Comparison of ALS, Airborne CIR and 
ALOS AVNIR-2 Data

The potential of remote sensing in 
tropical forests is examined in relation to the 
diversification of sensors in related study (HOU 
et al., 2011). We compared alternative methods 
that use multisource data from Airborne 
Laser Scanning (ALS), Airborne CIR and 
ALOS AVNIR-2 to estimate stem volume 

and basal area, in Laos. Multivariate linear 
regression analyses with stepwise selection of 
predictors were implemented for modelling. 
The predictors of ALS metrics were calculated 
by means of the canopy height distribution 
approach, while predictors from both spectral 
and textual features were respectively generated 
for Airborne CIR and ALOS AVNIR-2 
data. With respect to the estimation capacity 
from individual data sources after leave-one-
out cross-validation, the ALS data proved 
superior, with the lowest RMSE of 36.92% 
for stem volume and 47.35% for basal area, 
whereas Airborne CIR and ALOS AVNIR-2 
remained at similar accuracy levels, but fell well 
behind the ALS data. By integrating ALS 
metrics with other predictors from Airborne 
CIR or ALOS AVNIR-2, hybrid modelling 
was further tested respectively. The results 
showed that only the hybrid model for stem 
volume involving ALS and Airborne CIR 
improved the accuracy of 1.9% in terms of 
relative RMSE than that of using ALS alone 
(HOU et al., 2011).
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Comparison of Populations and 
Remote Sensing Alternatives 

The needed number of plots in each 
province is highly dependent on correlation 
with remote sensing data. Provincial variation 
also varies quite a lot, which is visualised in 
figure 6.

The total cost of field work required 
for measurements were estimated during test 
inventories in Saravane. The decreasing trend 
and importance of accurate remote sensing 
information is visualised in figure 6. When 
the R² value between field data and remote 
sensing data is increasing the need for field 
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Figure 6. Comparison of field data needs in different provinces and in different R² levels. When 
large correlation between remote sensing and field data exists, there is small need for 
field data even in the provinces with large variation.

work is decreasing rapidly. The size of field 
sample plot is also important. If we have too 
small field sample plots, the variation between 
plots is very high. The inclusion probability 
for small areas of large trees is so low that 
relatively large plots are required. However, 
it is recommended that where possible whole 
plots should fall in the same forest type, so 
that remote sensing procedures can utilise 
plot information directly as ground truth 
training area. Figure 6 shows that almost 
double the amount of small field plots are 
required compared to large plots, when there 
is low correlation between field and remote 
sensing data.
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The cost and quality of remote sensing 
are normally connected to each other.  Medium 
resolution satellite data is quite cheap per area 
unit and we can easily cover the entire country 
with low cost. VHR satellite data and ALS 
data are normally utilised on a sample basis. 
Depending on the autocorrelation of the 
forest population, certain types of information 
can be collected from a single sample unit. 
For comparison of different material, cost 
estimates for different scenarios were prepared 
(Table 2). The required sampling based 
number of image plots in a 25 km² area were 
determined using autocorrelation values of 
Lao PDR. The degrees of determination 
(R²) for different material for landuse and 
biomass estimation were estimated. The value 
for biomass of ALS data were based on the 
pilot test. 

Image material Purpose
Price of 
Images

Landuse 
R2

Biomass 
R2

Price of B 
Plots Total Price
Eur

ALOS AVNIR 10 m + Prism 2.5 m Full coverage 120 000 0.7 0.3 126297 246 297
Spot, pan 2.5 + color 5 m Full coverage 1 393 200 0.8 0.3 126297 1 519 497
Spot, pan 5 + color 10 m Full coverage 696 600 0.7 0.3 126297 822 897
Spot, 20 m Full/Monitoring 245 100 0.6 0.3 126297 371 397
IRS LISS 15 m + pan 5m Full coverage 504 000 0.7 0.3 126297 630 297
IRS Awifs, 60 m Monitoring 12 800 0.5 0.1
Ikonos Pan 1 m + Color 4m Sample, unit 25 km2 550 000 0.9 0.5 93330 643 330
GeoEye I, 0.5 m + 2 m Sample, unit 25 km2 687 500 0.9 0.5 93330 780 830
Quickbird, 1 m + 4 m Sample, unit 25 km2 990 000 0.9 0.5 93330 1 083 330
Kompsat-2, 1m + 4 m Sample, 25 km2 440 000 0.9 0.5 93330 533 330
Ikonos Pan 1 m + Color 4m Sample, unit 25 km2 250 000 0.9 0.5 93330 343 330
Quickbird, 1 m + 4 m Sample, unit 25 km2 450 000 0.9 0.5 93330 543 330
Kompsat-2, 1m + 4 m Sample, 25 km2 200 000 0.9 0.5 93330 293 330
Spot, 2.5 Sample, 25 km2 243 000 0.9 0.5 93330 336 330
Laser scannnig Sample line 250 000 0.9 0.82 37692 287 692

Table 2.  Total cost of materials (image data and field plots) required for specific material, when 
given R2 values are applied and 10 % reliability criteria is required for provinces. Field 
plots are planned for forest area only.

When the cost of field measurements 
are considered, the difference between small 
and large plots is quite small when different 
remote sensing materials are compared (Table 
2). The field data cost can be added to image 
data costs and total cost of the inventory 
system can be estimated (Table 2 ). Normally, 
we need a medium resolution whole country 
coverage image mosaic and additional VHR/
ALS imagery for proper field sampling. 
Thus, the final system is a combination of 
full coverage, remote sensing sampling and 
field plots.  So, according to current price 
assumptions, the most efficient price way is 
to use ALOS data, laser-scanning and field 
data. In this case, field plots are planned for 
the forest areas only. Additional cost figures 
and plots are needed for other land use strata 
(forest, non-forest, uncertain).
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Discussion

Among the remote sensing approaches 
employed here it was ALS that provided the 
most promising performance when estimating 
stem volume and basal area in a mixed-
species tropical forest. ALOS AVNIR-2 
and Airborne CIR data performed less well. 
Though, the ALS estimates of basal area did 
not attain the same accuracy level as that 
of stem volume after cross-validation. By 
contrast, optical data were found to be more 
accurate at estimating basal area than stem 
volume, although still with a less appealing 
performance than ALS. (HOU et al., 2011). 
Quickbird imageries have similar response 
that airborne CIR and are feasible solution 
for small scale mapping. The availability and 
price balance of different data sources can vary 
significantly between areas.

Methodology wise, it was feasible to 
transplant popular Scandinavian approaches 
from estimating boreal forest attributes (eg. 
TOKOLA et al., 1996) to that of tropical 
context. Among the data sources tested, it 
was ALS that proved to be the most accurate 
and competent in Laos, Southeast Asia, thus 
complement other investigations focused on 

different tropical areas (DRAKE et al., 2002; 
HURT et al., 2004; CHAMBERS et al., 2007). 
There has been several studies which have 
demonstrated rough monitoring in tropics 
(eg. ASNER, 2009; ASNER et al., 2009). 
However, inaccurate ALS measurements are 
still prone to occur in hilly or mountainous 
regions with errors extending up to several 
metres (MCKEAN; ROERING, 2004 ). 
Furthermore, the awareness concerning the 
effectiveness of hybrid models coincides with 
another study conducted by Nelson et al.  
(2007) who compared the ALS-only and joint 
ALS–RaDAR models and concluded that 
there was little gain brought by combination 
of sensors (HOU et al., 2011).

With respect to the cost of data 
procurement, ALS was the most costly despite 
its low pulse density at 1 pulse/m², and the 
second most expensive was Airborne CIR. 
ALOS AVNIR-2 was, in relative terms, 
ten times cheaper than ALS. If taking the 
cost-effectiveness under tropical context into 
consideration, ALOS AVNIR-2 data is of 
potential to be used for obtaining rough but 
economic estimates, while ALS data is an 
alternative to satisfy needs demanding better 
accuracy (HOU et al., 2011).
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