nduction of tolerance to salt stress in tomato seeds primed with salicylic acid

Sebastião de Oliveira Maia Júnior, Jailma Ribeiro de Andrade, Ronaldo do Nascimento, Robson Felipe de Lima, Gleyka Nóbrega Vasconcelos

Abstract


Salinity affects millions of acres of farmland worldwide, and is increasing every day. Therefore, tolerance inducers in plants have been widely used, among them salicylic acid. Thus, it was aimed to investigate the effects of different concentrations of salicylic acid on germination and growth of tomato seedlings in saline conditions. The treatments were arranged in a completely randomized design, in a 4 × 2 factorial (four concentrations of salicylic acid: 0, 0.25, 0.5 and 1.0 mM; and two stress treatments: control and saline stress), with four replicates. The salicylic acid, when at the concentration of 1.0 mM and in saline condition, inhibits the percentage and rate of germination speed in tomato seeds in the initial phase. The salinity reduces the percentage and rate of germination speed of tomato seeds, besides the growth and water content in the seedlings, but increases the dry mass of the aerial part. The increase in salicylic acid concentrations, in salinity condition, increases seedling growth and relative water content, and decreases the extravasation of electrolytes, improving growth vigor index.


Keywords


sodium chloride, tolerance inducer, vigor index, membrane integrity.

References


ABDUL-BAKI, A. A.; ANDERSON, J. D. Vigor determination in soybean seed by multiple criteria. Crop Science, v. 13, n. 6, p. 630-633, 1973.

ALAMRI, S. A.; SIDDIQUI, M. H.; AL-KHAISHANI, M. Y.; ALI, H. M. Response of salicylic acid on seed germination and physio-biochemical changes of wheat under salt stress. Acta Scientific Agriculture, v. 2, n. 5, p. 36-42, 2018.

ANAYA, F.; FGHIRE, R.; WAHBI, S.; LOUTFI, K. Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences, v. 17, n. 1, p. 1-8, 2018.

ARFAN, M. Exogenous application of salicylic acid through rooting medium modulates ion accumulation and antioxidant activity in spring wheat under salt stress. International Journal of Agriculture and Biology, v. 11, n. 4, p. 437-442, 2009.

AYERS, R. S.; WESTCOT, D. W. A qualidade de água na agricultura. FAO. Irrigação e Drenagem. 2. ed. Campina Grande: UFPB, 1999. 153p.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, DF: MAPA/ACS, 2009.

CAMPOS, C. A. B.; FERNANDES, P. D.; GHEYI, H. R.; BLANCO, F. F. Production of tomato seedlings under saline irrigation. Revista Caatinga, v. 20, n. 2, p. 32-38, 2007.

CHU, X. T.; FU, J. J.; SUN, Y. F.; XU, Y. M.; MIAO, Y. J.; XU, Y. F.; HU, T. M. Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. South African Journal of Botany, v. 104, p. 21-29. 2016.

DEMONTIÊZO, F. L. L.; ARAGÃO, M. F.; VALNIR JUNIOR, M.; MOREIRA, F. J. C.; PAIVA, P. V. V.; LIMA, S. C. R. V. Emergência e crescimento inicial de tomate ‘Santa Clara’ em função da salinidade e condições de preparo das sementes. Irriga, v. 1, n. 1, p. 81-92, 2016.

FAYEZ, K. A.; BAZAID, S. A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, v. 13, n. 1, p. 45-55, 2014.

FERREIRA, D. F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, v. 38, n. 2, p. 109-112, 2014.

GEHLING, V. M.; MENDONÇA, A. O.; ANJOS, F. C.; ALLGAYER, G. D.; VILLELA, F. A.; AUMONDE, T. Z. Desempenho fisiológico de sementes e plântulas de tomateiro sob diferentes temperaturas. Scientia Agraria Paranaensis, v. 16, n. 1, p. 32-38, 2017. DOI: 10.18188/1983-1471/sap.v16n1p32-38

HUSEN, A.; IQBAL, M.; SOHRAB, S. S; ANSARI, M. K. A. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agriculture & Food Security, v. 7, n. 1, p. 44, 2018.

JAMIL, A.; RIAZ, S.; ASHRAF, M.; FOOLAD, M. R. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, v. 30, n. 5, p. 435-458, 2011.

KHAN, M. I. R.; FATMA, M.; PER, T. S.; ANJUM, N. A.; KHAN, N. A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, v. 6, p. 462, 2015. DOI: 10.3389/fpls.2015.00462

LOTFI, N.; SOLEIMANI, A.; VAHDATI, K.; ÇAKMAKÇI, R. Comprehensive biochemical insights into the seed germination of walnut under drought stress. Scientia Horticulturae, v. 250, p. 329-343, 2019.

MAGUIRE, J. D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, v. 2, n. 2, p. 176-177, 1962.

MEDEIROS, J. F. D.; LISBOA, R. D. A.; OLIVEIRA, M. D.; SILVA JÚNIOR, M. J. D.; ALVES, L. P. Caracterização das águas subterrâneas usadas para irrigação na área produtora de melão da Chapada do Apodi. Revista Brasileira Engenharia Agrícola e Ambiental, v. 7, n. 3, p. 469-472, 2003.

MUNNS, R.; TESTER, M. Mechanism of salinity tolerance. Annual Review of Plant Biology, v. 59, n. 6, p. 651-681, 2008. DOI: 10.1146/annurev.arplant.59.032607.092911

PIVETTA, L. G.; PIVETTA, L. A.; CASTOLDI, G.; FREIBERGER, M. B.; ZANOTTO, M. D.; VILLAS BOAS, R. L. Germination and initial growth of crambe (Crambe abyssinica Hochst.) under saline conditions. Australian Journal of Crop Science, v. 11, n. 12, p. 1614, 2016.

SÁ, F. V. S.; DO NASCIMENTO, R.; PEREIRA, M. O.; BORGES, V. E.; GUIMARÃES, R. F. B.; RAMOS, J. G.; MENDES, J. S.; DA PENHA, J. L. Vigor and tolerance of cowpea (Vigna unguiculata) genotypes under salt stress. Bioscience Journal, v. 33, n. 6, p. 1488-1494, 2017.

SHAKI, F.; MABOUD, H. E.; NIKNAM, V. Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Current Plant Biology, v. 13, p. 16-22, 2018.

SHRIVASTAVA, P.; KUMAR, R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, v. 22, n. 2, p. 123-131, 2015.

SOUZA, F. M.; SÁ, F. V. S.; SOUTO, L. S.; PAIVA, E. P.; ANDRADE, R. A.; ARAÚJO, G.; BRESSIA, E. Desenvolvimento inicial e tolerância de cultivares de maxixe irrigado com água salina. Revista Brasileira de Agricultura Irrigada, v. 12, n. 1, p. 2385-2394, 2018.

STEINER, F.; ZUFFO, A. M.; BUSH, A.; SOUSA, T. O.; ZOZ, T. Does seed size affect the germination rate and seedling growth of peanut under salinity and water stress. Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics), v. 49, p. e54353-e54353, 2019.

STEVENS, J.; SENARATNA, T.; SIVASITHAMPARAM, K. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, v. 49, n. 1, p. 77-83, 2006.

SZEPESI, A.; CSISZÁR, J.; BAJKÁN, S.; GÉMES, K.; HORVÁTH, F.; ERDEI, L.; DEÉR, A. K.; SIMON, M. L.; TARI, I. Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt-and osmotic stress. Acta Biologica Szegediensis, v. 49, n. 1-2, p. 123-125, 2005.

TAIZ, L.; ZEIGER, E.; MOLLER, I. M.; MURPHY, A. Fisiologia e Desenvolvimento Vegetal. Artmed, 6ª ed. Porto Alegre-RS, 888 p. 2017.

TONEL, F. R.; MARINI, P.; BANDEIRA, J. D. M.; MORAES, D. M. D.; AMARANTE, L. D. Salicylic acid: physiological and biochemical changes in seeds and maize seedlings subjected to salt stress. Journal of Seed Science, v. 35, n. 4, p. 457-465, 2013.

ZAHRA, S.; AMIN, B.; ALI, V. S. M.; ALI, Y.; MEHDI, Y. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). Journal of biophysics and structural biology, v. 2, n. 3, p. 35-41, 2011.